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Motivations

• Data Breaches;

• Financial Losses;

• Disruption of Services.

Cyber-attacks are threats 
to network security. 

1. Attackers become more stealthy and sophisticated.

2. Networks become more complex. 

Network security 
becomes more 

challenging. 

• Firewalls;

• Intrusion Detection Systems;

• Moving Target Defenses.

Defense mechanisms 
cannot  guarantee 

perfect network security. 



Motivations

Cyber insurance provides network users a valuable additional layer of 
protection to mitigate potential vulnerabilities [Kesan et al., 2005] [Bolot et 
al., 2009 ] [Pal et al., 2014].

Different from the traditional insurance paradigm, cyber insurance has two 
unique features.

1. The risks of cyber-attacks are not created by natural failures but by intelligent 
attackers who deliberately inflict damages on the network. 

2. Cyber risks can propagate over a network.

We establish a bi-level game-theoretic model to capture the complex 
interactions among different types of players, and we further extend it to 
study a network of users and their risk interdependencies.



Problem Statement: Overview
• Network: Well-Connected; No 

Isolated Node.

• Users: Protect themselves 
by local protection methods 
and mitigate the losses from 
cyber attacks by subscribing to 
cyber insurance.

• Attackers: Conduct cyber-
attacks to achieve malicious 
goals.

• Insurers: Provide cyber 
insurance.             
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Case 1

❖ 1 Node

❖ 1 User

❖ 1 Attacker

❖ 1 Insurer

Case 2(a)

❖ N Nodes

❖ N Users

❖ N Attackers

❖ N Insurers

Case 2(b)

❖ N Nodes

❖ N Users

❖ N Attackers

❖ 1 Insurer

Case 3

❖ N Nodes

❖ 1 User

❖ 1 Attacker

❖ 1 Insurer

Problem Statement: Cases



Case 1: 1 Node-1 User-1 Attacker-1 Insurer

R

up

R

ap

• 𝑝𝑢 ∈ 0,1 : Local Protection Level.

• 𝑝𝑎 ∈ 0,1 : Attack Level.

• 𝑅 ≔ 𝑟 𝑝𝑢, 𝑝𝑎 = log(
𝑝𝑎

𝑝𝑢
+ 1) : Risk Level. 

User: pu

Attacker: pa

Risk Level 

R=r(pu, pa)



Case 1: 1 Node-1 User-1 Attacker-1 Insurer

• 𝑋~exp(
1

𝑅
): Direct Loss. 

• 𝑓 𝑥 𝑅 =
1

𝑅
𝑒−

1

𝑅
𝑥. 

• Ε 𝑋 = 𝑅 = log(
𝑝𝑎

𝑝𝑢
+ 1) .

User: pu

Attacker: pa

Risk Level 

R=r(pu, pa)
Direct Loss X



Case 1: 1 Node-1 User-1 Attacker-1 Insurer

• 𝑇: Subscription Fee.

• 𝑠 ∈ [0,1]: Coverage Level.

• 𝑠𝑋: Covered Loss. 

• 𝜉 = 1 − 𝑠 𝑋: Effective Loss.

• 𝑇 − Ε 𝑠𝑋 : Insurer’s Operating Profit.

✓ Individual Rationality IR − 𝑢 :
Ε 𝜉 + 𝑇 ≤ Ε 𝑋 .

✓ Individual Rationality IR − 𝑖 :
𝑇 − Ε 𝑠𝑋 ≥ 0.

Subscription Fee T

Coverage sUser: pu

Attacker: pa

Insurance Company 

s, T

Risk Level 

R=r(pu, pa)
Direct Loss X

Effective Loss 

ξ=(1-s)X



Case 1: 1 Node-1 User-1 Attacker-1 Insurer

User and Attacker, Zero-sum Game, Complete Information: 
• User: Reduce the average effective loss. Cost of Local Protections: 𝑐_𝑢.
• Attacker: Enlarge the average effective loss. Cost of Cyber Attacks: 𝑐_𝑎.
• Zero-sum Game:

min
𝑝𝑢

max
𝑝𝑎

Ε 𝜉 + 𝑐𝑢𝑝𝑢 − 𝑐𝑎𝑝𝑎 .

Subscription Fee T

Coverage sUser: pu

Attacker: pa

Insurance Company 

s, T

Risk Level 

R=r(pu, pa)
Direct Loss X

Effective Loss 

ξ=(1-s)X



Case 1: 1 Node-1 User-1 Attacker-1 Insurer

User and Attacker, Zero-sum Game, Complete Information: 
• Unique Saddle-Point Equilibrium (SPE):

𝑝𝑢
∗ =

(1−𝑠)

𝑐𝑢+𝑐𝑎
, 𝑝𝑎

∗ =
𝑐𝑢(1−𝑠)

𝑐𝑎(𝑐𝑢+𝑐𝑎)
.

• Peltzman Effect: 𝑠 ↑, 𝑝𝑢
∗ ↓.

• Constant Cost Determined SPE Risk: 

𝑅∗ = log(
𝑝𝑎
∗

𝑝𝑢
∗ + 1) = log(

𝑐𝑢
𝑐𝑎

+ 1) .

Subscription Fee T

Coverage sUser: pu

Attacker: pa

Insurance Company 

s, T

Risk Level 

R=r(pu, pa)
Direct Loss X

Effective Loss 

ξ=(1-s)X



Case 1: 1 Node-1 User-1 Attacker-1 Insurer

User and Insurer, Principal–agent Problem, Incomplete Information:

• Insurer: Make a profit and reduce the average effective loss of the user.

• 𝑐𝑖: Tradeoff between a larger profit of the insurer and a safer user.

• Insurer: max
𝑠,𝑇

(𝑇 − Ε 𝑠𝑋 ) − (𝑐𝑖Ε 𝜉 )

s. t.
Ε 𝜉 + 𝑇 ≤ Ε 𝑋 ; IR − 𝑢

𝑇 − Ε 𝑠𝑋 ≥ 0. IR − 𝑖

Subscription Fee T

Coverage sUser: pu

Attacker: pa

Insurance Company 

s, T

Risk Level 

R=r(pu, pa)
Direct Loss X

Effective Loss 

ξ=(1-s)X



Case 1: 1 Node-1 User-1 Attacker-1 Insurer

User and Insurer, Principal–agent Problem, Incomplete Information:
• Linear Insurance Policy Principle: 

𝑇 = 𝑠𝑅∗.
• Zero-operating Profit Principle: 

𝑇 − 𝑠𝑅∗ = 0.
• Optimal Insurance Policy: 

𝑠∗ = 1, 𝑇∗ = 𝑅∗.

Subscription Fee T

Coverage sUser: pu

Attacker: pa

Insurance Company 

s, T

Risk Level 

R=r(pu, pa)
Direct Loss X

Effective Loss 

ξ=(1-s)X



Case 1: 1 Node-1 User-1 Attacker-1 Insurer

User and Insurer, Principal–agent Problem:
• Linear Insurance Policy Principle: 

𝑇 = 𝑠𝑅∗.
• Zero-operating Profit Principle: 

𝑇 − 𝑠𝑅∗ = 0.
• Optimal Insurance Policy: 

𝑠∗ = 1, 𝑇∗ = 𝑅∗.

User and Attacker, Zero-sum Game: 
• Unique Saddle-Point Equilibrium (SPE):

𝑝𝑢
∗ =

(1−𝑠)

𝑐𝑢+𝑐𝑎
, 𝑝𝑎

∗ =
𝑐𝑢(1−𝑠)

𝑐𝑎(𝑐𝑢+𝑐𝑎)
.

• Peltzman Effect: 𝑠 ↑, 𝑝𝑢
∗ ↓.

• Constant Cost Determined SPE Risk: 

𝑅∗ = log(
𝑝𝑎
∗

𝑝𝑢
∗ + 1) = log(

𝑐𝑢

𝑐𝑎
+ 1) .

Subscription Fee T

Coverage sUser: pu

Attacker: pa

Insurance Company 

s, T

Risk Level 

R=r(pu, pa)
Direct Loss X

Effective Loss 

ξ=(1-s)X



Case 1: 1 Node-1 User-1 Attacker-1 Insurer
Subscription Fee T

Coverage sUser: pu

Attacker: pa

Insurance Company 

s, T

Risk Level 

R=r(pu, pa)
Direct Loss X

Effective Loss 

ξ=(1-s)X

User, Attacker, and Insurer, Bi-level Game:
• Bi-level Game Nash Equilibrium: 

𝑠∗ = 1, 𝑇∗ = 𝑅∗ = log(
𝑐𝑢
𝑐𝑎

+ 1) , 𝑝𝑢
∗ = 0, 𝑝𝑎

∗ = 0.

• Insurer: Full Coverage.
• User and Attacker: No actions. 



Case 2(a),2(b),3: Network Effects

• Network: 𝑁 Nodes, 𝑛 = 1,… , 𝑁.

• Local Protection Levels: 𝑝𝑢,𝑛.

• Attack Levels: 𝑝𝑎,𝑛.

• Coverage Levels: 𝑠𝑛.

• Subscription Fees: 𝑇𝑛.

• Risk Levels: 𝑅𝑛.

• Direct Losses: 𝑋𝑛.

• Effective Losses: 𝜉𝑛.
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Case 2(a),2(b),3: Network Effect

1

32

𝑤11 = 0

𝑤12 = 0.5 𝑤13 = 0.5

𝑤11 + 𝑤12 + 𝑤13 = 1

𝑤22 = 0 𝑤33 = 0

𝑤21 = 1 𝑤31 = 1

𝑤21 + 𝑤22 + 𝑤23 = 1

𝑤31 + 𝑤32 + 𝑤33 = 1

𝑤23 = 0

𝑤32 = 0

• 𝑤𝑚𝑛 : Probability that an attack on node 𝑚
leads to an attack on node 𝑛, 

𝑤𝑚𝑚 = 0,෍
𝑛=1

𝑁

𝑤𝑚𝑛 = 1, ∀𝑛 = 1,… ,𝑁.

• Risk Levels: 

𝑅𝑛 ≔ 𝑟 𝑝𝑢,𝑛, 𝑝𝑎,𝑛 + 𝜂 ෍

𝑚=1

𝑁

𝑤𝑚𝑛𝑅𝑚 .

• 𝜂 ∈ [0,1]: Scalability parameter of the 
network effect.

• 𝐑 = 𝐫 + 𝜂𝐖𝑇 𝐑 ⟹ 𝐑 = 𝐈 − 𝜂𝐖𝑇 −1𝐫.

• 𝐖∗ = 𝐈 − 𝜂𝐖𝑇 −1.

• 𝑅𝑛 ≔ σ𝑚=1
𝑁 𝑤𝑛𝑚

∗ 𝑟 𝑝𝑢,𝑚, 𝑝𝑎,𝑚 .

• 𝑤𝑛𝑚
∗ > 0,𝑤𝑛𝑛

∗ > 1, ∀𝑛,𝑚.



Case 2(a)

Case 2(b)

Case 3

Case 2(a),2(b),3: Zero-sum Games

min
𝑝𝑢,𝑛

max
𝑝𝑎,𝑛

𝐾𝑛 𝒑𝑢, 𝒑𝑎 , 𝑠𝑛 = Ε 𝜉𝑛 + 𝑐𝑢,𝑛𝑝𝑢,𝑛 − 𝑐𝑎,𝑛𝑝𝑎,𝑛

min
𝒑𝑢

max
𝒑𝑎

෍

𝑛=1

𝑁

𝐾𝑛(𝒑𝑢, 𝒑𝑎, 𝑠𝑛) = ෍

𝑛=1

𝑁

Ε 𝜉𝑛 + 𝑐𝑢,𝑛𝑝𝑢,𝑛 − 𝑐𝑎,𝑛𝑝𝑎,𝑛

• Ε 𝜉𝑛 = Ε (1 − 𝑠𝑛)𝑋𝑛 = 1 − 𝑠𝑛 Ε 𝑋𝑛

= 1 − 𝑠𝑛 𝑅𝑛 = 1 − 𝑠𝑛 ෍

𝑚=1

𝑁

𝑤𝑛𝑚
∗ 𝑟 𝑝𝑢,𝑚, 𝑝𝑎,𝑚 .



Case 2(a)

Case 2(b)

Case 3

Case 2(a),2(b),3: Zero-sum Games

Similarities: 
• Unique Saddle-Point Equilibrium.
• Peltzman Effect.
• Constant Cost Determined SPE 

Risks:

𝑅𝑛
∗ = ෍

𝑚=1

𝑁

𝑤𝑛𝑚
∗ log(

𝑐𝑢,𝑚
𝑐𝑎,𝑚

+ 1) .

Differences: 
• Actions: Case 3 > Case 2> Case 1.
• Actions: Case 3 depends on other 

nodes.
• SPE Risks: Case 2,3 > Case 1.

𝑝𝑎,𝑛
∗ =

𝑐𝑢,𝑛 1 − 𝑠𝑛 𝑤𝑛𝑛
∗

𝑐𝑎,𝑛(𝑐𝑢,𝑛 + 𝑐𝑎,𝑛)

𝑝𝑢,𝑛
∗ =

1 − 𝑠𝑛 𝑤𝑛𝑛
∗

𝑐𝑢,𝑛 + 𝑐𝑎,𝑛

𝑝𝑢,𝑛
∗ =

σ𝑚=1
𝑁 1 − 𝑠𝑚 𝑤𝑚𝑛

∗

𝑐𝑢,𝑛 + 𝑐𝑎,𝑛

𝑝𝑎,𝑛
∗ =

𝑐𝑢,𝑛 σ𝑚=1
𝑁 1 − 𝑠𝑚 𝑤𝑚𝑛

∗

𝑐𝑎,𝑛(𝑐𝑢,𝑛 + 𝑐𝑎,𝑛)



Case 2(a)

Case 2(b)

Case 3

Case 2(a),2(b),3: Principal-Agent Problems

max
𝑠𝑛,𝑇𝑛

(𝑇𝑛 − Ε 𝑠𝑛𝑋𝑛 ) − (𝑐𝑖,𝑛Ε 𝜉𝑛 )

s. t. IR − 𝑢, 𝑛 , IR − 𝑖, 𝑛 .

max
𝒔,𝑻

෍

𝑛=1

𝑁

(𝑇𝑛 − Ε 𝑠𝑛𝑋𝑛 ) − (𝑐𝑖,𝑛Ε 𝜉𝑛 )

s. t. IR − 𝑢, 𝑛 , IR − 𝑖, 𝑛 , ∀𝑛 = 1,… ,𝑁.

max
𝒔,𝑇

෍

𝑛=1

𝑁

(𝑇 − Ε 𝑠𝑛𝑋𝑛 ) − (𝑐𝑖,𝑛Ε 𝜉𝑛 )

s. t. IR − 𝑢 , IR − 𝑖 .

• Individual Rationality 
IR − 𝑢, 𝑛 : 

Ε 𝜉𝑛 + 𝑇𝑛 ≤ Ε 𝑋𝑛 .
• Individual Rationality 

IR − 𝑖, 𝑛 :
𝑇𝑛 − Ε 𝑠𝑛𝑋𝑛 ≥ 0.

• Individual Rationality IR − 𝑢 : 

෍

𝑛=1

𝑁

Ε 𝜉𝑛 + 𝑇 ≤ ෍

𝑛=1

𝑁

Ε 𝑋𝑛 .

• Individual Rationality IR − 𝑖 :

𝑇 −෍

𝑛=1

𝑁

Ε 𝑠𝑛𝑋𝑛 ≥ 0.



Case 2(a)

Case 2(b)

Case 3

Case 2(a),2(b),3: Principal-Agent Problems

Similarities: 
• Linear Insurance 

Policy Principle.
• Zero-operating Profit 

Principle.
• Full Coverage.

Differences: 
• Subscription Fee: Case 

2,3 > Case 1.

2. Optimal Insurance Policy: 
𝑠𝑛
∗ = 1, 𝑇𝑛

∗ = 𝑅𝑛
∗ .

1. Linear Insurance Policy: 𝑇𝑛 = 𝑠𝑛𝑅𝑛
∗ .

2. Optimal Insurance Policy:
𝑠𝑛
∗ = 1, 𝑇𝑛

∗ = 𝑅𝑛
∗ .

1. Linear Insurance Policy: 𝑇𝑛 = 𝑠𝑛𝑅𝑛
∗ .

2. Optimal Insurance Policy: 

𝑠𝑛
∗ = 1, 𝑇∗ =෍

𝑛=1

𝑁

𝑠𝑛𝑅𝑛
∗ .

1. Linear Insurance Policy: 

𝑇 =෍
𝑛=1

𝑁

𝑠𝑛𝑅𝑛
∗ .



Case 2(a)

Case 2(b)

Case 3

Case 2(a),2(b),3: Bi-level Games

𝑠𝑛
∗ = 1, 𝑇𝑛

∗ = 𝑅𝑛
∗ ;

𝑝𝑢,𝑛
∗ = 0, 𝑝𝑎,𝑛

∗ = 0.

𝑠𝑛
∗ = 1, 𝑇𝑛

∗ = 𝑅𝑛
∗ , ∀𝑛;

𝑝𝑢,𝑛
∗ = 0, 𝑝𝑎,𝑛

∗ = 0.

𝑠𝑛
∗ = 1, ∀𝑛, 𝑇∗ = ෍

𝑛=1

𝑁

𝑅𝑛
∗ ;

𝑝𝑢,𝑛
∗ = 0, 𝑝𝑎,𝑛

∗ = 0, ∀𝑛.

Similarities: 
• Insurers: Full Coverage.
• Users and Attackers: No 

Actions.

Differences: 
• Subscription Fee: Case 

2,3 > Case 1.



Future Directions: 
• Dynamic setting;

• Data-driven decision-making;

• Complex networks.

Contributions: 
• We have proposed a bi-level game-theoretic framework that incorporates a zero-

sum security game nested with a principal-agent model.

• We have studied four distinct scenarios including single node case, centralized and 
decentralized network cases. For each scenario, the solution of the optimal 
insurance mechanism design problem is completely characterized.

• We have shown the Peltzman effect that the user tends to be risky when he 
subscribes the insurance.

• We have shown the linear insurance policy principle and the zero-operating profit 
principle of the insurer.


