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Abstract: (223) Many of the over-time trends in available cybersecurity indicators appear to 

show that things are getting decidedly worse online. Yet many of these worsening trajectories 

might actually be based upon underlying trends that paradoxically show the situation in online 

security to be improving year over year. This peculiar reversal of fortune is known as ‘Simpson’s 

Paradox.’ In this paper, I show that Simpson’s Paradox emerges in the data on cybersecurity 

trends when three conditions exist: 1) the aggregate numbers are based upon data from definable 

subgroups; 2) the subgroups have differential propensities towards being hacked; and 3) the rate 

of expansion of these subgroups over time is mirrored by their vulnerability, with the most 

susceptible groups expanding the fastest. The near exponential growth of the IoT almost 

guarantees that these conditions exist online today. I test for Simpson’s Paradox using a Monte 

Carlo simulation involving 2,002 iterations of randomly simulated data across both a Gaussian 

and a type-1 power law distribution. The tests show that a variant of Simpson’s Paradox could 

easily be clouding our view of cybersecurity. The high possibility of a Simpson’s Paradox in 

cyberspace entails that the worsening state of online security might not be as bad as many people 

think and that radically disjunctive policy reforms to ‘fix’ perceived cybersecurity challenges 

might not be warranted by the available evidence.      
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In 1983, the Reagan Administration formed a National Commission on Excellence in Education 

to assess the state of K-12 schooling in America. The final report of the Commission, A Nation 

at Risk, charged that education was threatened by a “rising tide of mediocrity.” The claim was 

supported, as the Commission saw it, by a steady decline in students scoring over 650 on the 

SATs, with an average drop of 50 points in verbal scores and a 40 point drop in mathematics.1  

Based upon the findings of the report, both the Reagan and subsequent administrations radically 

overhauled K-12 education. The report led to changes in funding, curriculum, administration, 

classroom practices and to more standardized metrics of teacher and student evaluation. Many of 

these reforms were at once drastic and of questionable effect in terms of their ability to properly 

prepare students to face the rigors of an ever-changing economy.  But, with test scores spiraling 

the drain, it seemed as though desperate times called for desperate measures.  

The massive overhaul of educational policy and practice in America certainly seemed to be 

justified by the worsening state of student SAT scores as evidenced by the aggregated test 

outcomes. The problem was, student SAT performance was not actually in decline. Upon a 

second look at the numbers by researchers at Sandia National Laboratories, it turned out the 

observed nationwide decline in average SAT scores was masking some contrary underlying 

trends. When the numbers were disaggregated and observed at discrete categories of 

performance for students at the top, middle, and bottom of their high school classes, the trend in 

SAT scores actually showed modest improvement from 1975-1990. As a result, the Sandia 

researchers concluded, “the logical explanation for a decline in the combined average score 

[was] that the demographics of the students taking the exam [had] changed,” with relatively 

poor-performing students making up a larger proportion of the sample over time.2 Unfortunately, 

few had time for subsequent number crunching. At the level of official policy at least, the initial 

results stood, even though the statistical and evidentiary base of the massive (and often 

deleterious) reforms undertaken in the educational sector were based upon a faulty reading of the 

statistics.  

It is a cautionary tale, one that cybersecurity researchers, practitioners and policymakers need to 

understand. On most accounts, the state of cybersecurity is also showing a worsening trend over 

time.3 Each passing year seems to bring ever more breached records, hacked devices and new 

software vulnerabilities. Distributed denial of service attacks (DDoS) are growing in severity and 

even national power grids have become the tantalizing target of cyber intrusions, as was the case 

in Ukraine in December of 2015. These troubling trends have led former Homeland Security 

Secretary Tom Ridge to posit, in the fall of 2016, that “Notwithstanding the pain and horror 

associated with a physical attack. The potential for physical, human, and psychic impact with a 

cyberattack, I think, is far more serious.”4 Looking at these aggregate trends alone, the 

deteriorating state of cyber security seems to suggest the need for major new policy 

implementation and reforms, likely encompassing governments, private sector actors, insurance 

companies and even individuals. 

Yet as was the case with educational performance in the US, the aggregate trends in 

cybersecurity might be misleading. If they are, then the perceived worsening in the state of 

online security could encourage governments, businesses and individuals to act in radically 
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disjunctive ways that are not in fact warranted by the evidence. In this paper, I use simulated data 

to show how simple it would be for the perceived overall worsening of cybersecurity to result 

from a version of what is known as Simpson’s Paradox.5 When the Yule-Simpson effect, as it is 

also known, is at work, aggregate trends can show a worsening situation, but the performance of 

distinct subgroups all demonstrate a trend towards an improving state of online security.  

My core argument is a straightforward one. A Simpson’s Paradox can manifest in cybersecurity 

measures if three highly plausible conditions are met. First, there are different groupings of 

hackable points online. Second, the groupings have different propensities towards being hacked. 

And third, the proportionate size of the groupings varies over time, with the number of worst 

performers growing fastest overall. As I show in more detail below, each of these three 

conditions quite plausibly obtains in today’s online environment. Some people are savvy users 

who are relatively unlikely to be hacked. Others are more naïve users who are comparatively 

prone to being breached. And, increasingly, some hackable points are no longer even users, but 

are composed of the rank and file of notoriously insecure Internet of Things (IoT) devices.  

Moreover, using a series of simulations each containing both a single graphical iteration and an 

additional 1,000 iteration Monte Carlo run, I show that Simpson’s Paradox readily emerges when 

these conditions obtain. The results are also robust to diametrically opposed views about what 

the online world within which live is like. One set of simulations assumes the world of 

cybersecurity is normally distributed according to a Gaussian curve. The other assumes that the 

networks of the Internet form power law distributions. In Nassim Nicholas Taleb’s language, the 

difference here is between a world of “Mediocristan” (Gaussian) and a the realm of 

“Extremistan” (power law).6 Yet, in both potential worlds, the results support the idea that 

aggregate trends showing an increasingly insecure online environment could be the result of 

Simpson’s Paradox rather than an actual overall worsening of cybersecurity. As a result, severely 

disjunctive policy responses aimed at improving cybersecurity might not be warranted, and may, 

as was the case with some aspects of early K-12 educational reform, actually make things worse.     

By way of a roadmap for what follows, I first present a look at some aggregate-level trends in 

cybersecurity. The second section fleshes out in more detail the workings of Simpson’s Paradox. 

The third section shows how the necessary assumptions for such a paradox to emerge in the 

realm of cybersecurity are easily met. The fourth section describes the simulated data for a 

Gaussian world and presents the results of both a single iteration graphical representation of the 

state of cybersecurity and a 1,000 iteration Monte Carlo simulation. Section five likewise 

describes the simulated data for a power law world and presents both a graphical and a 1,000 

iteration simulation to test for the plausibility of Simpson’s Paradox. The final section concludes 

by providing a discussion of the relevance of this finding for policymakers in the cybersecurity 

space.    

Some Aggregate Trends in Cybersecurity 

Looking at the raw numbers on cybersecurity, it is readily apparent why so many people have 

developed so much anxiety over the state of online security.  
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Privacy Rights Clearinghouse (PRC), for example, has collected a record of all disclosed data 

breaches in the US from 2005 to 2016. Like all data, the over-time trend is a bit noisy. As shown 

in Figure 1, the count of disclosed breaches, in particular, bounces around a fair bit, but 

nevertheless tends to show a trajectory towards ever more breaches over time. The average 

number of breaches in the first six years of the sample, for instance, is 381 breaches per year. 

The average for the second half of the sample, in contrast, is 498 disclosed breaches, making up 

a marked difference.  

The trend in the number of breached records shows an even starker trajectory. From first to last, 

the number of breached records has swelled by 4,320 percentage points, increasing from ‘just’ 

54,831,241 breached records in 2005 to 2,423,733,400 in 2016.7 Mega breaches, such as the 

compromise of one billion Yahoo! account holders (counted in 2016 according to PRC data), 

have helped to grow these troubling numbers.  

At the same time, a part of the change is also due to a worsening in the number of records 

compromised per disclosed data breach. In the first half of the sample, the number of stolen 

records per data breach was 403,889. However, by the last six years of the sample, the breach 

rate had grown to almost 2 million compromised records per data breach (1,900,666), a jump of 

slightly over 4.5 times.   

 

The simple average trends in Privacy Rights Clearinghouse data paint a picture that plausibly 

points towards the idea that cybersecurity is getting decidedly worse.8 A number of factors could 

be at play, including changing data breach disclosure laws that require more companies, 

governments and non-governmental organizations to make public that they have suffered from a 

security incident. But even heuristically taking shifting regulatory regimes into account, the 
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numbers still seem to suggest a worrisome move towards more and more compromised personal 

details every year.  

 

Other data sources tend to demonstrate a similar trend. IT security firms, who are in the business 

of protecting users while also drumming up new business, commonly issue annual reports 

documenting the poor state of cybersecurity. Kaspersky Labs, for example, issues an annual 

Security Bulletin.9 In the bowels of the various reports over the years is a record of the observed 

number of attacks launched from online resources. Again, the trajectory, as depicted in Figure 2, 

shows a clearly worsening trends between 2008 and 2015, although attacks have declined since 

2013. Indeed, even with 2 years of improving numbers taken into account, from the start (2008) 

to the end of the sample period (2015), the number of attacks has grown by 3,270 percent.  

The antivirus and IT security firm Symantec observes a similar trend. Each year, they release an 

annual report known as the Internet Security Threat Report.10 In the pages of these documents, 

Symantec provides a count of the number of cyberattacks that it has blocked for its customers 

over time, starting in 2012. With minor fluctuations aside, the trend is unambiguously positive: 

blocked attacks are going up. In this case, the count of blocked attacks has increased by 139 

percentage points, rising from 167,900,000 blocked intrusions in 2012 to 401,500,000 in 2015.        

There are, of course, a number of reasons to suspect that these trends in observed attacks might 

misrepresent the true extent of the problem. The correct measurement of cybersecurity indicators 

is a particularly perilous enterprise. Statistics based upon a survey of users, for example, can 

easily misrepresent the problem if the numbers follow a power law distribution rather than a 

normal Gaussian curve.11 Statistics can also be widely biased by problems of underreporting.12 

Among firms, a lack of common metrics, both within a firm over time and across firms in a 

given sector, can cause serious problems in aggregate data.13 The data on cybersecurity can also 

simply miss key facets of the problem, biasing estimates of cost, occurrence or severity.14 

Publicly available IT security vendor data, finally, can be particularly error prone, as these firms 
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are in the uncomfortable position of doing research on a phenomenon the occurrence of which 

they depend upon for their livelihood.15 

Additionally, even if the count of costs, attacks, vulnerabilities or what have you is correctly 

collected and measured, a failure to normalize these statistics around the growing size of the 

Internet ecosystem can still lead people to mistakenly conclude that things are far worse in the 

realm of online security than they actually are.16 Increases in the total number of attacks as 

documented in the data above might not necessarily mean, therefore, that things are actually 

growing worse overall.  

Yet even when the number of attacks are normalized in appropriate ways, the overall aggregate 

trends still often shows a worsening trajectory.17 The perception (and practice, in some cases) of 

worsening numbers has led to a broad-based deterioration in the sentiment of cybersecurity 

practitioners. The Index of Cybersecurity, for instance, has documented a steadily worsening 

perception of systemic risk among cybersecurity professionals, which has increased from under 

1,500 in May 2012 to 3,640 as of April 17, 2017.18 Across a variety of metrics, then, the 

aggregate situation in cyberspace appears to be pretty grim. Data breaches are becoming more 

common and affecting more people, all while various forms of online attacks continue to 

increase, potentially leading to millions of people being infected with malware of various stripes 

each and every year.  

Based upon an observation of just these aggregate trends, it would be fair to conclude that the 

deteriorating state of cybersecurity clearly warrants significant, disjunctive and far-reaching 

policy reform. By simply observing that the average trend is poor, it is easy to conclude that we 

need to reach deep and reform everything we can in order to make our digital ecosystem more 

secure. But, as was the case with educational reform following the Nation at Risk report, these 

radical policy reforms might not be warranted. The aggregate trends might be lying to us.   

Simpson’s Paradox 

Despite being something many people have never even heard of, Simpson’s Paradox—otherwise 

known as Yule-Simpson effect or aggregation bias—can very easily “trap the unwary.”19 For 

something so far from the public imagination, it continually manifests in situations as diverse as 

university graduate admissions, mortality rates among smokers and non-smokers and price 

elasticity in the economy—and, of course, educational outcomes.20 When it does emerge, as we 

saw with the example of the Nation at Risk report, aggregate negative trends can actually be 

based upon underlying positive outcomes, and, conversely, positive trends at the aggregate level 

can actually be based upon underlying negative ones.  

A medical study assessing the effectiveness of various kidney stone removal techniques is one 

famous example of the logic of Simpson’s Paradox in action.21 The study’s aim was to determine 

which type of surgery was the most effective at eliminating kidney stones. To isolate for the 

effectiveness of each treatment, the researchers broke the study population of 1,052 patients with 

renal calculi into two groups: those with kidney stones that were greater than 2 cm and those 
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whose stones were less than 2 cm. Had they not, a significant portion of their results would have 

fallen prey to Simpson’s Paradox.22 

While a non-invasive procedure known as extracorporeal shockwave lithotripsy (ESWL) was the 

most effective treatment overall, the peculiarities of the Yule-Simpson effect emerge quite 

distinctly when comparing the aggregate and disaggregate numbers for open surgery techniques 

and percutaneous nephrolithotomy.  

Table 1. Aggregate Success Rates of Open Surgery and Percutaneous Nephrolithotomy 

 Total N Number of 

Successful 

Cases 

Success 

Rate 

Best Treatment 

Open Surgery 350 273 78% No 

Percutaneous 

Nephrolithotomy 

350 289 83% Yes 

 

Table 1 presents the aggregate results of a comparison of these two treatment methods. Open 

surgery was effective in 273 instances, representing a success rate of 78 percent. Percutaneous 

nephrolithotomy, in contrast, was successful in 83 percent of the treatments. These results come 

out quite clearly in favor of percutaneous nephrolithotomy as the more effective treatment 

method. But, these aggregate trends—as we saw before in the case of educational outcomes—

mask some confounding underlying dynamics.  

 

Table 2 presents the disaggregated results for the same comparison. When the cases are divided 

into the researcher’s study groups (again, those with kidney stones less than 2cm (Group 1) and 

those with stones greater than or equal to 2 cm (Group 2)), the most effective treatment is 

inverted. In contrast to the aggregate results, open surgery emerges as the winner. For Group 1, 

for example, open surgery is successful 93 percent of the time, compared to an 87 percent 

success rate for percutaneous nephrolithotomy. For Group 2, open surgery is effective in 73 

percent of the cases, compared to a success rate of just 69 percent for the alternative method. In 

short, open surgery, which was less successful in the aggregate, emerges as the more successful 

Table 2. Disaggregate Success Rates of Open Surgery and Percutaneous 

Nephrolithotomy 

 Total 

N 

Number of 

Successful 

Cases 

Success 

Rate 

Best 

Treatment 

 

Group 1 (<2cm) 

Open Surgery 87 81 93% Yes 

Percutaneous 

Nephrolithotomy 

270 234 87% No 

 

Group 2 (>=2cm) 

Open Surgery 263 192 73% Yes 

Percutaneous 

Nephrolithotomy 

80 55 69% No 
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method when the results are disaggregated and considered conditional upon the size of the 

patient’s kidney stones.  

The peculiar reversal emerges because the size of a person’s kidney stones is a so-called “lurking 

confounder.” A lurking confounder of this sort has to have two characteristics in order for a 

Simpson’s Paradox to emerge. In the exemplar language of this study, it has to be correlated with 

both the type of surgery employed (X) and the outcome or effectiveness of the surgery (Y).23 The 

size of a person’s kidney stones easily fits the bill.    

First of all, kidney stone size is clearly correlated with treatment options. Assignment to the 

various treatments in this case was not done at random, but rather availed upon the prevailing 

medical judgement of the doctors involved. This means that the treatment that a patient received 

was significantly related to the size of their kidney stones. For example, only 25 percent of the 

350 instances of open surgery were used in Group 1 (small kidney stone) cases. The remaining 

75 percent of open surgeries were used in the more severe cases of kidney stones over 2cm in 

diameter. Percutaneous nephrolithotomy displays the opposite trend. Here, the largest proportion 

(77 percent) of cases are clustered in group 1 containing those individuals with kidney stones 

under 2 cm in diameter.  

Kidney stone size is also correlated with success rates regardless of employed treatment type. In 

this particular study, success was measured as being free from kidney stones three months after 

the treatment. Larger, more complex cases should be harder to treat, everything else being equal, 

and the numbers tend to bear this logic out. Of the 357 Group 1 cases involving both treatment 

types, some 315 (88 percent) were successful. In contrast, within the more severe cases in Group 

2, only 247 of the 343 treatments were effective, marking a relatively poor success rate of only 

72 percent.   

In sum, when a lurking cofounder that is correlated with both the outcome and the independent 

variable of interest exists, any observed aggregate relationships become susceptible to Simpson’s 

Paradox. Trends in one direction at the aggregate level can even reverse when the data is 

disaggregated into constituent categories. As I show in the next three sections, the perils of 

Simpson’s Paradox could easily apply in today’s world of cyberspace.  

The Plausibility of the Three Necessary Conditions for Simpson’s Paradox in 

Cybersecurity 

As shown in the initial section, aggregate trends in cybersecurity tend to be pointing in a 

decidedly negative direction. US data breaches seem to be growing in both frequency and 

severity, while globally observed malicious attacks are mounting. With the caveats about the 

importance of proper measurement methods and normalization aside, it looks for all intents and 

purposes like efforts to enhance cybersecurity have been, so far at least, a largely losing battle. 

At the very least, this negative sentiment is what is largely believed by many policymakers in 

government and the private sector.24 But what if the Yule-Simpson effect is at work in 

cybersecurity?  

Simpson’s Paradox readily emerges in cybersecurity if three conditions hold: 
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 First, there are definably distinct groups of hackable points online; 

 Second, these hackable points have different propensities towards being hacked; 

 And, finally, the growth of these groups over time is uneven, with the most susceptible 

category being the fastest growing segment.  

Each of these conditions are exceedingly plausible given the Internet’s rapid commercialization 

since the launch of the World Wide Web in the early 1990s, particularly with the recent turn 

towards more interconnected devices than humans. Simply put, Simpson’s Paradox might be 

clouding our view of cybersecurity and things might be far better than they at first appear on the 

surface.  

Let’s begin by fleshing out the plausibility of each of the three conditions, before looking at how 

their combined effect results in a Yule-Simpson effect in cybersecurity. Take the first condition, 

that there are definably distinct groups of hackable points online. As we saw before in the kidney 

stone treatment example, these groups cannot be any old set of groupings. Depending upon how 

you slice the pie, there are already plenty of definable groups online, such as trolling 

subcultures,25 hacktivist collectives such as Anonymous,26 globe-spanning cybercriminal 

gangs,27 and a myriad other formal and informal associations. But, the important groupings for 

the issue of measuring cybersecurity correctly have be potential victim categories. Victim 

categories, in other words, are confounders; that is, they have some relationship to both the 

likelihood that a person or device will be hacked and the growth of the Internet over time. 

Groups of this sort are easy enough to conceptualize. With enough information on the disposition 

and behavior of users (broadly defined), it would be possible to divide the world up into three 

potential target types or cybercrime victim categories: savvy users, naïve users and Internet of 

Things devices. The existence of such potential grouping satisfies the first condition.  

Obviously, each of these points could be hacked, but their propensity or vulnerability toward 

external intrusion would significantly vary. This variation satisfies the second condition. Savvy 

users, for example, would be individuals with a certain amount of technical expertise, 

perceptions of self-efficacy or knowledge of IT security threats.28 Such users would take at least 

some precautionary steps to protect themselves online, such as using antivirus software, avoiding 

certain websites, and knowing, in general terms at least, what sort of things to avoid doing in 

email.  

Savvy users are likely the smaller subset of all human users. For instance, one survey of 

computer users, conducted by the Organization for Economic Co-Operation and Development 

(OECD), found that only 31 percent of people are tech savvy. To determine this figure, the 

survey had some 215,942 people across 33 countries complete 14 general computer-based tasks. 

Only 5 percent fell into the highly competent category at the top of the pile, while another 26 

percent fell into the moderately skilled camp.29 Plausibly, then, the sum of the two (31 percent of 

users) fall into the savvy user category at the end of 2015. The number of savvy users can be 

further extrapolated into the end of 2017. Since all users must be either savvy or naïve, the 

remaining 69 percent could be classified as more naïve users of networked technologies in 2015 

and so forth. 
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The other definable grouping of hackable points online is not human at all, but is composed 

instead of Internet-enabled devices. The explosive growth of the IoT—which I mark as starting 

in 2008 when the number of Internet-connected devices surpassed the number of actual Internet 

users—provides a host of targetable points that malicious actors can exploit. The devices 

themselves are, moreover, notoriously vulnerable to external intrusion. One 2015 report by 

Symantec on The Insecurity in the Internet of Things, for example, found ten significant security 

issues with IoT home products. These issues included worrying results such as a severe lack of 

mutual authentication procedures between device clients and servers; limited use of password 

protection best practices such as two-factor authentication, the inability to change weak default 

passwords and the inadequate use of password lock-out measures to slow brute force attacks; as 

many as 10 security issues in the 15 portals used to remotely control IoT devices; and a litany of 

common web application vulnerabilities plaguing the various IoT cloud platforms.30 Another 

study by HP conducted in 2014 likewise found that upwards of 70 percent of IoT devices were 

vulnerable to being hacked.31 The rapid expansion of the Mirai malware that turns IoT devices 

into botnet zombies—causing a bunch of DVRs and babycams to take down Netflix in the fall of 

2016—is a good example of the vulnerability of this segment of the overall ecosystem.32 In 

short, it is fair to say that the lack of security built into IoT devices makes them even more 

vulnerable than most naïve human users employing laptops, desktops and mobile devices and a 

only a modest dose of common sense.  

The last condition that needs to be present for Simpson’s Paradox to emerge is that these three 

groups of distinctly hackable points must grow at different rates over time, with the more 

vulnerable camps expanding faster than more secure users. Publicly available World Bank data 

on Internet users and data on IoT expansion from Statista Research gives us a starting point for 

the numbers.33 Subsequently applying a couple of simplifying assumptions makes it easy enough 

to plot out the relative growth of each grouping from the first quarter of 1990 to the end of 2017.  

Users, first of all, need to be split between the savvy and naïve categories. Inevitably, the 

proportionate division between savvy users and naïve users is not static over time. It is quite 

plausible that early adopters of the Internet were almost by definition tech savvy people—which 

is not to say that they could not fall prey to problems, only that they had more understanding of 

the mechanics at play than later users. If we assume for the sake of argument that 99 percent of 

the Internet’s original users in 1990 were savvy and that the 31 percent of people who could 

complete numerous computers tasks are the savvy proportion of the population in 2015, then we 

can employ a simple linear interpolation equation to show the proportion of savvy and naïve 

users per quarter between Q1 1990 and the end of 2015 and a linear extrapolation function to 

determine the proportion of savvy users at the end of 2017.34 Obviously, parts of the Internet’s 

expansion have been decidedly non-linear and interpolation over long time frames is inherently 

fraught with perils, but the general notion that one group expands as the other contracts is well 

served with the simple linear interpolation procedure.  

Plotting the growth in the IoT from it ‘birth’ in 2008 to the end of 2017 is a bit simpler. Statista 

Research has estimates for the total annual number of IoT devices from 2012-2017. Assuming 
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that the IoT was born in Q1 2008 when the number of IoT devices was equal to the number of 

users plus one, then here again linear interpolation can fill in the quarterly gaps.  

Figure 3 plots out the actual quarterly trends in the absolute number of hackable points in each 

grouping from Q1 1990 to the end of 2017. The central takeaway is that all three are clearly on 

the rise, but the rate of increase is decidedly different. The IoT is growing fastest, handily 

beating out both types of users. Among the human user category, the total number of savvy users 

is getting decidedly outpaced by the increase in naïve users, particularly after around the end of 

2004. In more precise terms, from 2008 when the IoT entered the sample until the end of 2017, 

the IoT grew some 1631 percent, Naïve users grew by 310 percent and savvy users grew by only 

34 percent. In short, the third necessary condition for the Yule-Simpson effect to be at play is 

plausibly satisfied.     

 

Given that the three conditions necessary in order for the Yule-Simpson effect to be distorting 

our view of cyberspace are plausibly met, the remaining task is to quantify some of the implicit 

notions above and employ simulated data in order to look to see if a deteriorating overall trend 

can actually mask three distinctly improving trajectories. The following discussion in sections 

four and five does this in two ways and across two different views of reality (a normal 

distribution and a power law distribution). First, for each scenario, I present a single iteration of 

the simulated data and plot the results graphically to highlight the point. Second, I use a Monte 

Carlo simulation to determine the results of the simulations over 1,000 iterations of the data. In 

both cases, the results support the idea that a Yule-Simpson effect could easily be at work in 

cybersecurity.  
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Cybersecurity in a ‘Normal’ World 

This section details how when the three conditions hold, Simpson’s Paradox can cloud our view 

of cybersecurity in a world that is characterized by normal, Gaussian distributions. To do so, I 

employed Excel’s (pseudo)random number generator to simulate a normally distributed number 

expressing the proportion of each category of user will be hacked in a given quarter. This 

number can be effectively understood at a conceptual level as a proportion of users breached in 

each category in each quarter.  

 

Table 3 presents summary statistics for the data used in the single iteration of the simulations. 

The min, max, mean, median and standard deviation categories are pretty self-explanatory and 

capture the basic statistical dimensions of the simulated data. To generate data that ensured 

differing hack proportions for each category of user or device, the mean in the random generator 

function was set at 45 for savvy users, 60 for naïve users and 70 for IoT devices. The standard 

deviation in the random number generator was 3.33 for each, creating a set of random numbers 

that are effectively bounded in the range of 35-55 for savvy users, 50-70 for naïve users and 65-

85 for IoT devices. The overlap in these ranges captures the invariably fuzz boundaries that 

would mark membership in each category.   

The rate of improvement column captures the notion that each group is getting modestly better at 

staying safe online over time. The improvement rate is determined probabilistically. Each group 

has some probability (0.1) that the randomly generated hack proportion value for each quarter 

will be discounted by some additional count value. The discount rate for each group remains 

constant over the range of the data, but the size of the associated count value increases in size by 

integer values starting at 0 and ending in the last quarter of 2017 at 112.  

With this sense of the dimensions of the single iteration of the simulated data in a Gaussian 

world under our belts, we can turn to the plotted data from the single iteration to observe whether 

Simpson’s Paradox could be clouding our understanding of cybersecurity.  

In line with the discussion above about the aggregate cybersecurity trends as observed by 

Privacy Rights Clearinghouse and various IT security firms, an initial one-off run of the 

simulated data in aggregate shows a decidedly worsening situation over time. The aggregate 

simulated data are based upon the weighted average of the proportion of users hacked in each 

quarter for the various subsamples for each quarter for each year. For example, in 1990, when we 

assumed savvy users made up 99 percent of the user base of the Internet and when the IoT was 

Table 3. Summary Statistics for The Graphically Presented Simulated Data 

 Improvement 

Rate 

Min Max Mean Median Standard 

Deviation 

Savvy 

Users 

0.1 0.29 0.50 0.40 0.40 0.044 

Naïve 

Users 

0.1 0.44 0.62 0.54 0.53 0.042 

IoT 0.1 0.59 0.73 0.66 0.66 0.032 
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not yet in existence, the aggregate value for Q1 was heavily weighted toward the hack proportion 

of savvy users (savvy users hack proportion = 0.44, the naïve users hack proportion was 0.51 and 

aggregate total hack proportion = 0.437). As more naïve users flooded onto the scene, the 

aggregate hack proportion shifted each quarter to reflect the weighted average of users in the two 

categories, as it continued to do after 2008 when the IoT became a source of hackable points in 

the Internet ecosystem.    

Figure 4 plots the aggregate (weighted average) relationship between the growth of the Internet 

over time (x) and the aggregate estimated proportion of users that are hacked each period (y). 

The plotted quarters are overlaid with a linear trend line that is meant to be indicative of the 

directionality of the movement of the data over time and not a more analytical regression. In the 

early 1990s, the average hack proportion is around 42 percent. By the end of the simulated data 

in 2017, the average is well over 63 percent, indicating a decidedly worsening picture of online 

security. Based upon this simulated data, as with the real trends in data breaches and observed 

attacks noted above, the situation in cyberspace appears to be getting worse over time, at least 

according to the aggregated numbers.   

 

However, once the aggregate data is decomposed into its constituent groups, the seemingly 

worsening situation reverses itself. Figure 5, for example, plots the relationship between the 

expansion of the Internet over time and the proportion of savvy or sophisticated users that are 

hacked in each quarter, again overlaid with a linear trend line. Unlike the trend in the aggregate 

data, the trend for savvy users is decidedly negative. In 1990, the average hack proportion for 

savvy users was just over 42 percent. By the end of the simulated range in 2017, the average 

hack proportion had declined to closer to 29 percent.  
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Figure 4. The Aggregate Trend in Cybersecurity (Normal World)
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A similarly negative trend is found in the naïve user subcategory. Figure 6 plots the simulated 

data. Like in the savvy user subsample, the trend between the expansion of the Internet over time 

and the proportion of users that are hacked in each quarter is negative. In 1990, the proportion of 

naïve users that are hacked according to the simulated data was roughly 61 percent. By 2017, the 

proportion of hacked users declined by over 16 percentage points, falling to 45 percent of the 

category population. According to these data, naïve users—as with savvy users—are actually 

becoming safer online over time, despite what the aggregate trend indicates.  

 

Figure 7, finally, plots the IoT subsample. As in the other two instances, the relationship between 

network expansion over time (x) and the simulated proportion of IoT devices that are hacked (y) 

is negative. Starting in 2008, when the IoT was brand new and (even more) riddled with insecure 

code, around 73 percent of devices were hacked in this one-off run of the simulated data. By the 

end of the sample in 2017, the proportion of hacked IoT devices declined to slightly less than 66 

percent, which would accommodate for people gradually coming to grips with the need for 

security by design in IoT devices. The decline for the IoT is less pronounced than the other 

categories due to the shorter time frame for its existence. Had the IoT existed since 1990 as well, 
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it too would has seen a much sharper decline in the proportion of devices that are hacked each 

quarter.   

  

The figures capture the output of a single iteration of the simulated data in a normally distributed 

world. The basic implication is that a variant of the Yule-Simpson effect could indeed be 

increasing the public’s perception of growing threats to their security in cyberspace. However, 

randomly generated data over a single iteration can show almost anything and could easily be 

quite far from the norm. To correct for the potential randomness and extremity of a single 

iteration of the data, I ran a Monte Carlo simulation to produce an average estimated hack 

proportion for each category of hackable points over 1,000 iterations of the data.  

The results of the Monte Carlo simulation are in line with those of the single iteration presented 

in the graphs above. Table 4 presents the average hack proportions for the 1,000 iterations of the 

data. For ease of presentation, the 112 quarterly averages for each category of hackable point 

over the 27-year range are broken into quartiles. Each quartile encompasses seven years or 28 

quarterly periods. The last column in the table presents the percentage point change in the 

proportion of users from each group that are hacked from the first to the last quartile.  

As detailed in Table 4, all three of the user categories experience a decline over this period over 

the 1,000 iterations of the data. Savvy users and naïve users, both of which are in the sample 

from the very beginning, decline the most, falling 9 percentage points each.3 The IoT category, 

likewise, falls by a relatively modest 2 percentage points. In contrast to these declining numbers, 

the average proportion of units that are hacked over the 1,000 iterations of the data for the 

aggregate trend is positive, increasing over the study range by 16 percentage points. Like the 

results of the single iteration of the data presented above, negative trends aggregate into an 

overall positive trajectory.  

                                                           
3 Since the decline rate is the same across each user category, having both savvy users and naïve users decline in 
the same amount is to be expected. If either the rate of decline or the number of years that one of the categories 
was in the sample was to change, the gap between the two categories would grow more pronounced. 
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Table 4. Simpson’s Paradox Over 1,000 Iterations of the Data (a Gaussian World) 

 Hack 

Proportion 

(1990-1996) 

Hack 

Proportion 

(1997-2003) 

Hack 

Proportion 

(2004-2010) 

Hack Proportion 

(2011-2017) 

Over Sample 

Percentage 

Point Change 

Savvy Users  44% 41% 38% 35% -9% 

Naïve Users 59% 56% 53% 50% -9% 

IOT N/A N/A 67% 65% -2% 

Aggregate 

Trend 

45% 45% 52% 61% 16% 

 

In short, the simulated data presented here suggest that common observations of the worsening 

state of cybersecurity could be falling prey to Simpson’s Paradox. In aggregate, the simulated 

results show things getting worse, with a higher proportion of people and devices getting hacked 

over time (potentially up to 16 percentage points more likely, according to the Monte Carol 

simulations). The trends in the underlying data, however, are decidedly different. For each 

discrete subgroup (savvy users, naïve users and IoT devices), the proportion of users and devices 

that are hacked each quarter is going down. Paradoxically, these results imply that cyberspace is 

getting safer, even as it seems at a more general level to be getting more insecure. Simpson’s 

Paradox may well be striking again.  

Simpson’s Paradox in a Power Law World 

The discussion above assumed that the world of cybersecurity is neat and tidy, characterized 

mostly by a series of normally distributed curves. The implication of this assumption are 

manifold. Foremost among them is the idea that variance in the distribution of cybersecurity 

incidents is predictably constrained. Because of the underlying math that characterizes Gaussian 

distributions, 68 percent of observations in the simulated data above fall within one standard 

deviation of the mean, 95 percent of observations within two standard deviations and, of course, 

99 percent fall within three standard deviations. This regularity of occurrence is possible in some 

realms (human height being a prime example), but the networks of the Internet tend to form into 

so-called power law distributions, suggesting that cybersecurity might not be normal in the 

statistical sense of the term.35 Indeed, extrapolation from cybersecurity survey data is 

confounded by the underlying power law distribution of cybercrime.36 

When power laws govern the day, distributions develop large tails and are highly prone to 

outliers, which can easily be so huge that they make summary statistics such as the mean a lot 

less precise.37 A number of natural phenomenon form power law distributions, ranging from the 

use of words in the English language to earthquakes and academic article citations. Power Laws, 

also known as Pareto Distributions, can be so skewed that they are often loosely governed by the 

so-called 80/20 rule, where some 80 percent of the variance in the outcome of concern can be 

driven by just 20 percent of the observations. In short, a world that is governed by power law 

distributions is far more prone to extremes than the world of nice, bell-shaped Gaussian curves.38  



17 
 

To determine whether Simpson’s Paradox can emerge in a world of extremes, I simulated a type-

1 power law distribution again using Excel’s (pseudo)random number generator.4 In this 

simulation, I used some proportion of each category of hackable points as the Xmin value. I then 

divided the outputted number from the full equation by the total population for each respective 

category in each quarter. This essentially produces a number that can again be read as a 

proportion of users or devices breached in each quarter. At times, the proportion exceeds one, 

indicating that, effectively, all users and then some are hacked in a given quarter. A proportional 

value of 5, for instance, means that every user in the category has been hacked five times in that 

quarter, assuming that hacks are uniformly distributed within a category. As we shall see, a 

power law world is much more chaotic and prone to variance than the Gaussian world. But, 

when the three conditions hold, Simpson’s Paradox still emerges to once again cloud our view of 

cybersecurity. 

 

Table 5 presents some preliminary summary statistics for the single iteration data used below. 

The Xmin column shows the minimum number of users breached in each period. In order to 

fulfil the assumption that the groups have differential likelihoods of being hacked, the proportion 

of each user or device category that can be hacked increases from 0.4 in the savvy user case to 

0.6 with IoT devices. The α column shows the value on the exponent. In this case, the exponents 

decrease slightly across the categories of users. As the exponent shrinks, the variance in the 

distribution tends to increase, so an α of 3 for savvy users is less volatile and prone to extremes 

than an α of 2 for IoT devices.   

Power law distributions are marked by extremity by their very nature. This feature of the 

distribution type is well represented in the gap between the minimum and maximum values for 

all categories of users and devices, as shown in Table 5. The min for savvy users, for instance, is 

0.33, suggesting that a minimum of 33 percent of savvy users are hacked in a given quarter. The 

maximum is 1.02, which suggests that every user and then some (2 percent) could be hacked. 

                                                           
4 Since Excel does not have a built in function to generate power law curves, I use the following form: (xmin * 
(RAND()*(1+β/112))^(-1/α))/p, where xmin is the minimum value of x (number of users in each category who are 
hacked per quarter), RAND() generates a uniformly distributed variable between 0 and 1, β is a count variable 
ranging from 0 in period t-1 to 112 in the last quarter 2017, α is the exponent value and p is the whole population 
in that category of hackable point in that period. This form of the equation essentially produces a number that can 
be read as the proportion of users in each category of user or devices that have been hacked in a given quarter. I 
am grateful to John Coleman for helping me figure out how to model this sort of world.     

Table 5. Summary Statistics for Cybersecurity in a Power Law World 

 Xmin α Min Max Mean  Median Standard 

Deviation 

Savvy 

Users 

Savvy Users 

* 0.4 

3 0.33 1.02 0.50 0.45 0.15 

Naïve 

Users 

Naïve Users 

* 0.5 

2.5 0.39 5.25 0.77 0.57 0.57 

IoT 

Device  

Devices * 

0.6 

2 0.45 6.60 0.98 0.67 1.03 
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The most hackable category, IoT device, is even more extreme, with a minimum hack proportion 

of 0.45 and a maximum of that is rough 14.5 times larger at 6.60, suggesting that every devices is 

breached 6 plus times in one quarter. With maximum values like this one, it is clear that either 

some segments of the system can be breached repeatedly or every device is hit more than once 

(or a combination of both) in each quarter. This growing variance across the hackable groups is a 

result of the decreasing size of α. 

The other feature of power law distributions that crops up in stark relief is the gap between the 

mean and the median. With a normal distribution, the two statistics represent effectively the 

same thing in practical terms (see Table 3 above). In a world shaped according to power law 

distributions, the two statistics reveal very different facets of the underlying numbers. The mean 

is artificially high (and hugely unstable) because it is being driven up by massive outliers that 

add a disproportionate amount to the summed value of the outcome at hand. The median—as 

medians always do, splits the sample so that 50 percent of the observations are above the value 

and 50 percent are below the stated value. In some ways, the gap between the two statistics really 

shows just how much of the outcome is being driven by extremes. For example, there is a 30 

point spread between the mean and the median for the category of IoT devices. This suggests 

that, as again befits the role of a smaller exponent, the outcome of interest is highly prone to 

huge spikes. Regardless, despite the fundamentally different mechanics that are at work in the 

potential power law world of cybersecurity, Simpson’s Paradox can still emerge to cloud our 

view.     

 

Figure 8, for instance, presents the results of a single iteration simulation of the aggregate trend 

in cybersecurity in a power law world of extreme values. As was the case with the aggregate 

trend in the data within a world governed by Gaussian distributions, the aggregate trend in the 

proportion of users and devices that hacked is again positive, increasingly from roughly 55.9 

percent in 1990 to 78.2 percent in 2017. The variance within the data is clearly far more 

pronounced than what happened within the Gaussian world. While the proportion of users or 

devices that are hacked in the world of normal distributions tends to cluster fairly tightly around 
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the trend line, the numbers here swing wildly, sometimes hitting a value that is at least four times 

as much as the fitted linear trend line.  

Disaggregating the data reveals both the continuance of the high variance world of power laws 

and a series of improving trends in the proportion of people and devices that are hacked in each 

quarter. Figure 9, for example, plots the disaggregated data for the savvy user category. Despite 

the worsening aggregate trend, the general trajectory of hacking amongst the category of savvy 

users is decidedly negative.  

 

 

  

Figure 10 depicts the outcome of the single iteration of the data for the category of naïve users. 

Despite the high variance in outcomes, exemplified by the hugely positive values on specific 

quarters, the overall trend is again negative. In this case, the proportion of naïve users that are 

hacked in 1990 is around 83 percent, while the final proportion of hacked users for 2017 is 

essentially 73 percent, (although it is hugely important to stress that due to the nature of power 

laws, these averages are very prone to change and should not be read as having too much 

concrete meaning). Figure 11, finally, repeats the procedure with the simulated data for the 

category of IoT devices. The disaggregated trend is again negative, standing in stark contrast to 

the overall aggregate trend.  
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In a one-run simulation, Simpson’s Paradox does indeed emerge in a world where cybersecurity 

is governed by power laws instead of normally distributed curves. Yet, as was the case with the 

graphical data in the Gaussian world presented above, a single iteration of simulated data reveals 

very little about what might be going on in more general terms. Indeed, because means are so 

prone to fluctuations in power law distributions, the graphically presented numbers could be very 

far off from the more general trend.  

To help isolate for whether Simpson’s Paradox might emerge over many iterations of the data, I 

again ran Monte Carlo simulation to capture the effect of 1,000 iterations of the data. Of course, 

the warning about unstable averages in power law distributions cannot be stressed enough, so 

even the simulated trend over 1,000 iterations should be considered more suspect than what was 

found in the Gaussian world.   
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Figure 10. Hacking Naïve Users in a Power Law World
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Figure 11. Hacking the IoT in a Power Law World
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Table 6 presents the results of the 1,000 simulated iterations. Even over this larger swath of far 

noisier data, the possibility of Simpson’s Paradox emerging to cloud our view of cybersecurity 

remains a distinct possibility. Over the 27 years of the sample, the proportion of savvy users, 

naïve users and IoT devices that are hacked all declined, while the aggregate trend significantly 

increased. Naïve users, for instance, are 14.8 percentage points less likely to be hacked in the 

2011 to 2017 period when compared to the 1990 to 1996 period. In contrast, the overall 

aggregate trend sharply increases over this window of time, rising by some 21.3 percentage 

points. Simpson’s Paradox, the Yule Simpson effect or aggregation bias stands in plain sight as a 

cloud over our real view of what is happening in cybersecurity.  

  

Table 6. Simpson’s Paradox Over 1,000 Iterations of the Data (Power Law World) 

 Hack 

Proportion 

(1990-

1996) 

Hack 

Proportion 

(1997-2003) 

Hack 

Proportion 

(2004-2010) 

Hack Proportion 

(2011-2017) 

Over Sample 

Percentage 

Point Change 

Savvy Users 57.8% 53.8% 50.9% 49.0% -8.8% 

Naïve Users 80% 73.3% 69.1% 65.2% -14.8% 

IoT N/A N/A 89.8% 84.7% -5.1% 

Aggregate 

Trend 

59.9% 59.3% 67.4% 81.2% 21.3% 

 

Conclusion: The Measurement and Policy Implications of a Simpson’s Paradox in 

Cybersecurity  

From many different angles, it looks like the state of cybersecurity is getting a lot worse over 

time. Trends in hacks, data breaches and observed web-based attacks all point in a worsening 

direction. But, if the Yule-Simpson effect is at work, these aggregate trends can actually be based 

upon underlying trends that point in the opposite direction. Sometimes three rights really can 

make a wrong.  

Using a series of Monte Carlo simulation encompassing a total of 2,002 iterations of data, I 

showed that Simpson’s Paradox can easily emerge in cyberspace in both a normally distributed 

world and a realm where cybersecurity is prone to extremes (power laws). The results of these 

simulations suggest that users and devices might actually be becoming less prone to being 

hacked over time, even as the aggregate trends show everything getting much worse. As the 

simulated data shows us, this vexing mathematical quirk which can so easily confuse 

policymakers and analysts alike emerges in cyberspace if three plausible conditions are met:  

 First, there are definably distinct groups of hackable points online; 

 Second, these hackable points have different propensities towards being hacked; 

 And, finally, the growth of these groups over time is uneven, with the most susceptible 

category being the fastest growing segment.  
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When these three readily satisfiable conditions obtain, the result is a version of Simpson’s 

Paradox, where negative aggregate trends mask positive trends across all subsamples. The 

plausible operation of the Yule-Simpson effect in cyberspace has significant implications for 

both the measurement of cybersecurity trends and formulation of public policy.  

On the measurement front, the possibility of a Yule-Simpson effect in cybersecurity should 

caution those involved in the collection and analysis of security incident data away from looking 

only at overall trends as if they unambiguously represent the actual level of security online. The 

Internet ecosystem is nothing if not dynamic and its ever changing (and ever expanding) base 

means that plotting over time trends can be inherently fraught with statistical perils. As 

demonstrated here through the simulated data, the proliferation of relatively insecure IoT devices 

will make things seem far worse online than they were before. But that does not necessarily 

mean that users (and the designers of IoT devices, for that matter) are not getting better at 

preventing unwanted breaches. To accommodate for the easy occurrence of Simpson’s Paradox, 

analysts and data scientists need to collect data that is stratified along relevant lines.  

Luckily, the internal mathematical logic of Simpson’s Paradox provides some clues as to where 

we should look. Generic categories do not matter. In order for Simpson’s Paradox to emerge, the 

groups themselves need to be correlated with both the outcome (some form of security incidents) 

and the independent variable of interest (growth of the network over time, for example). 

Recognizing this simple requirement helps to immediately narrow the field of potential 

categories. Despite the ‘collect all’ mantra of the Big Data age, collecting information still comes 

with a cost and using theory as a guide can help to reduce the burden.    

On the policy front, the possibility of a Yule-Simpson effect in cyberspace poses challenges for 

those who advocate for extensive policy reform in the face of worsening aggregate trends. A lot 

hinges here upon the plausibility of the three conditions highlighted above. If the conditions are 

deemed to be implausible, then the demonstration of the Yule-Simpson effect in cyberspace with 

simulated data is tenuous. However, if the idea that there are users or end points online that can 

be categorized, have different hack propensities and grow in roughly inverse relation to their 

level of security, then Simpson’s Paradox is likely, as shown here.   

This puts policymakers in a tough spot. Certainly, there are genuine security problems online, 

ranging from data breaches, to ransomware, hacked cars and even compromised wearable 

technologies.39 Additionally, the media has sensationalized data breaches, hacks and IT security 

to a significant degree and people routinely express concern that they or their national 

institutions will be the target of a breach or malicious online activity.40 This combination of real 

problems and media-hyped sensationalism makes it difficult for policymakers to sit on their 

hands. Many might want to act and to act decisively and disjunctively, changing everything 

possible just to be seen to be keeping people and devices safe online.  

The trouble is, as was the case with massive educational reform during the 20th century in 

America, the best policies might be incremental tweaks, modifications and reforms rather than 

massive overhauls because things might actually be getting better over time. A part of the 

challenge for policymakers is that we do not really know. Policymakers, broadly defined, need 
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better evidence, which loops back and links the problems of policymaking right back to the 

problem of measurement and data collection. Researchers and policymakers, in other words, 

need to work hand in hand.   
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