		Data		
The effe	ct of competit	ion inter	nsity on	
	software sec	urity		
A.,	test such stand so			

An empirical analysis of security patch release on the web browser market

Arrah-Marie Jo

Telecom Paristech

WEIS 2017

イロト イポト イヨト イヨト

Telecom Paristech

The effect of competition intensity on software security

Introduction		Data	
Main question			

- The larger the market share of a software, the greater the probability for a security failure to be exploited.
- A more concentrated market → more security risks? (The danger of monoculture e.g. Stamp 2004; Böhme 2005; Schneier 2010)
- But how about software vendors security investment behavior?
- To answer to this question, we study the relationship between competition intensity and software vendors' responsiveness in releasing security patches.

(日) (同) (三) (三)

Introduction		Data	
Main question			

- The larger the market share of a software, the greater the probability for a security failure to be exploited.
- A more concentrated market → more security risks? (The danger of monoculture e.g. Stamp 2004; Böhme 2005; Schneier 2010)
- But how about software vendors security investment behavior?
- To answer to this question, we study the relationship between competition intensity and software vendors' responsiveness in releasing security patches.

<ロ> <同> <同> < 同> < 同>

Introduction		Data	
Main question			

- The larger the market share of a software, the greater the probability for a security failure to be exploited.
- A more concentrated market → more security risks? (The danger of monoculture e.g. Stamp 2004; Böhme 2005; Schneier 2010)
- But how about software vendors security investment behavior?
- To answer to this question, we study the relationship between competition intensity and software vendors' responsiveness in releasing security patches.

(日) (同) (三) (三)

Empirical strategy

- We study the case of the **web browser market**:
 - A market at the heart of web security issues
 - A software provided free of charge to users, a major element of today digital market strategies (Monopolkommission, 2015)

We use two aspects that reflects the competition intensity in the market:

- Market concentration
- Dominance of a firm

イロト イポト イヨト イヨト

Empirical strategy

- We study the case of the **web browser market**:
 - A market at the heart of web security issues
 - A software provided free of charge to users, a major element of today digital market strategies (Monopolkommission, 2015)
- We use two aspects that reflects the competition intensity in the market:
 - Market concentration
 - Dominance of a firm

(日) (同) (三) (三)

Web browser publishers derive their revenue from search engines

Browser	Publisher	Rendering engine	License	Revenue model
Chrome	Google	Blink (fork of Webkit)	Proprietary software with open source rendering engine (GNU LPGL). An open source version of the browser is available (Chromium)	90% of ABC's revenues come from search related ad.
Firefox	Mozilla	Gecko	Open source (MPL)	Built-in search engine royalties (> 90% of whole revenues, ≃100M\$) and donations
Internet Explorer	Microsoft	Trident and EdgeHTML since 2015	Proprietary	Revenues from other activities
Safari	Apple	Webkit	Proprietary software with open source rendering engine (GNU LPGL)	1B\$ of built-in search engine royalties from Google (in 2014)

Sources: Wikipedia, Bloomberg.com for Apple, official annual financial statement reports for Mozilla and Google

イロト イポト イヨト イヨト

	A model	Data	
A model (1	/4)		

What is the security quality that a firm choose to provide, considering:

- 1 The number of firms competing in the market
- 2 Firms' installed base of loyal consumers

	A model	Data	
A model (2/	4)		

Assumptions:

- Symmetric firms except for the size of their installed base of loyal consumers
- Consumer's utility depends only on security quality
- the per-capita revenue is exogenous
- Marginal cost is equal to zero
- Cost function for security investments is increasing and convex in security quality

イロト イポト イラト イラト

	A model	Data	
A model (3/4)		

There are *n* firms. Firm *i* chooses its security quality s_i and has a share of loyal consumers $b_i \in [0, 1]$. We note $\sum_{i=1}^n b_i = B$ ($B \leq 1$). Firm *i*'s profit is:

$$\pi_i = a \left[b_i + (1 - B) \frac{s_i}{\sum\limits_{j=1}^n s_j} \right] - \frac{\phi s_i^2}{2}$$

The security quality in equilibrium is:

$$s_i^* = \sqrt{(1-B)\cdot \frac{n-1}{n^2}\cdot \frac{a}{\phi}}$$

Telecom Paristech

(日) (同) (三) (三)

	A model	Data	
A model (4/	/4)		

If we assume that only firm k has an installed base, $B = b_k = \alpha_k m_k$, where $m_k \in (0, 1]$ firm k's market share and $\alpha_k \in (0, 1]$ the share of loyal consumers among its consumer, then:

$$s_k^* = \sqrt{(1 - \alpha_k m_k) \frac{n-1}{n^2} \cdot \frac{a}{\phi}}$$

∃→ < ∃→</p>

Image: Image:

	A model		Data	
Conclusion	from the mo	del		

From the model, we propose that:

- In a market where firms compete in security quality, market concentration has a positive effect on the security level provided by a firm $\left(\frac{\partial s_i}{\partial n} < 0\right)$.
- The security quality chosen by a highly dominant firm *i* decreases with respect to its market share (^{∂s_i}/_{∂m_i} < 0).</p>
- When a firm highly dominates the market then the positive effect of market concentration on the security level it provides is reduced (^{∂s_i}/_{∂m_i∂n} < 0).</p>

(日) (同) (三) (三)

	Empirical strategy	Data	

1 Introduction

2 A model

3 Empirical strategy

4 Data

5 Results

6 Conclusion

	Empirical strategy	Data	

Patching time as a proxy of the security quality

Figure: Security vulnerability life cycle

- - E - N

(日)

	Empirical strategy	Data	

The econometric model

$$patching_time = \beta_0 + \beta_1 concentration + \beta_2 X_{Vuln} + \beta_3 X_{Vend\&Soft} + \beta_4 disclosure + \beta_5 time_trend + \epsilon$$
(1)

$$patching_time = \beta_0 + \beta_{1a}concentration + \beta_{1b}big_mshare + \beta_{1c}concentration \cdot big_mshare + \beta_2 X_{Vuln} + \beta_3 X_{Vend&Soft} + \beta_4 disclosure + \beta_5 time_trend + \epsilon$$
(2)

	Empirical strategy	Data	

Main explanatory variables (1/2): Market concentration measures

Telecom Paristech

The effect of competition intensity on software security

	Empirical strategy	Data	

The econometric model

$$patching_time = \beta_0 + \beta_1 concentration + \beta_2 X_{Vuln} + \beta_3 X_{Vend\&Soft} + \beta_4 disclosure + \beta_5 time_trend + \epsilon$$
(3)

$$patching_time = \beta_0 + \beta_{1a}concentration + \beta_{1b}big_mshare + \beta_{1c}concentration \cdot big_mshare + \beta_2 X_{Vuln} + \beta_3 X_{Vend\&Soft} + \beta_4 disclosure + \beta_5 time_trend + \epsilon$$
(4)

	Empirical strategy	Data	

Main explanatory variables (2/2): Big_mshare

	Empirical strategy	Data	

The econometric model

$$patching_time = \beta_0 + \beta_1 concentration + \beta_2 X_{Vuln} + \beta_3 X_{Vend\&Soft} + \beta_4 disclosure + \beta_5 time_trend + \epsilon$$
(5)

$$patching_time = \beta_0 + \beta_{1a}concentration + \beta_{1b}big_mshare + \beta_{1c}concentration \cdot big_mshare + \beta_2 X_{Vuln} + \beta_3 X_{Vend\&Soft} + \beta_4 disclosure + \beta_5 time_trend + \epsilon$$
(6)

	Data	

1 Introduction

- 2 A model
- 3 Empirical strategy

4 Data

5 Results

6 Conclusion

< 一型

		Data	
Data			

- 586 vulnerabilities affecting Web browsers, reported from January 2007 to December 2016 from 3 different projects: Google Project Zero, Zero Day Initiative, and iDefense
- We consider the patch release time of the four principal browsers: Internet Explorer, Safari, Firefox, Chrome.
- Only vulnerabilities assigned to web browser publishers
- Enrichment with other databases
 - NVD & MITRE: public disclosure date, severity of the vulnerability, type of vulnerability

<ロ> <同> <同> < 同> < 同>

- From each vendor: version release date, vulnerability patching date
- Statcounter.com: evolution of market share
- ▶ ITU ICT Indicators database : evolution of number of internet users

	Data	

Regression models

- One observation: a web browser vulnerability assigned to a web browser publisher
- OLS & Negative Binomial model
 - Data fits well with the OLS model assumptions
 - Count model can be used (*Patching_time* is a positive integer), but we have 586 observations and the mean value is relatively distant from 0 (*mean* = 100.2)
 - \rightarrow Results of Linear and Negative Binomial regressions are compared
 - No additional value with a survival model

	Data	Results	

1 Introduction

- 2 A model
- 3 Empirical strategy
- 4 Data
- 5 Results

6 Conclusion

			Data	Results				
Results $(1/4)$)							
Using as main expl. variable: -n HHI								
		OLS	NB	OLS	NB			
		(coef.)	(AME)	(coef.)	(AME)			
Concentration		-5.483**	-4.794**	-85.35**	-114.3***			
		(2.422)	(2.314)	(42.14)	(42.00)			
Vulnerability sp (<i>vulnerability_s</i>	ecific variables <i>everity</i> , vulnera	bility type dummi	es)					
Soft. and vende (<i>software_age</i> ,	or specific varia vendor dummie	bles s) Al	l control varia	bles are includ	ed			
Disclosure effect	t variables							
Time effect var	iables							
Observations		586	586	586	586			
R-squared		0.388		0.386				
Wald chi-square	ed		236.43		239.51			
F	For OLS estimation, co	Robust Stand *** $p < 0.01$, ** $p =$ pefficients are reported. F	dard errors < 0.05, * $p < 0.1$ or NB, average marg	ginal effects are repo	rted. ∢≣⇒ ≣ ∽QQ			

				Da		Results	
Results (2/4)							
$Big_mshare = 1$	when:	market sh	are ≥ 0.40	market sh	are ≥ 0.45	market sh	hare ≥ 0.50
		OLS (coef.)	NB (IRR)	OLS (coef.)	NB (IRR)	OLS (coef.)	NB (IRR)
Concentration		-5.361**	0.932**	-5.496**	0.924***	-5.850**	0.914***
		(2.552)	(0.0265)	(2.561)	(0.0263)	(2.602)	(0.0260)
Big_mshare		42.45	5.939***	21.33	8.925***	34.01	22.02***
		(34.78)	(2.367)	(42.03)	(4.227)	(51.62)	(12.72)
Big₋mshare		8.942	1.298***	4.349	1.435***	6.998	1.738***
#Concentration	ı	(5.447)	(0.0847)	(7.376)	(0.123)	(9.489)	(0.190)
Vulnerability sp	ecific						
Soft. and vendo	or specific	2					
Disclosure effect	t		All c	ontrol varia	ables are in	cluded	
Time effect vari	ables						
Observations		586	586	586	586	586	586
R-squared		0.394		0.388		0.389	
Wald chi-square	ed		241.40		239.96		246.04
			D. L C.				

Robust Standard errors *** p < 0.01, ** p < 0.05, * p < 0.1

For OLS regressions coefficients are reported. For NB regressions IRR are reported.

The effect of competition intensity on software security

The effect of competition intensity on software security

Telecom Paristech

Results

Results (4/4): Impact of public disclosure of vulnerability information & open source component

Concentration:	-	n	н	ННІ		- <i>n</i>	
$Big_{-}mshare = 1:$					market sha	are ≥ 0.50	
	(OLS)	(NB)	(OLS)	(NB)	(OLS)	(NB)	
disclosure	-49.59***	-49.56***	-49.87***	-50.19***	-49.64***	-50.26***	
	(3.563)	(4.449)	(3.580)	(4.465)	(3.545)	(4.460)	
open_source	-17.53***	-22.46***	-18.40***	-23.64***	-16.10**	-23.75***	
	(5.352)	(5.327)	(5.295)	(5.253)	(6.466)	(6.319)	
		All	other variab	les are inclu	ded		
		ex	cept for ver	ndor dummi	es		
Observations	586	586	586	586	586	586	
R-squared	0.384		0.383		0.386		
Wald chi-squared		232.37		235.06		239.15	

Robust Standard errors

*** p < 0.01, ** p < 0.05, * p < 0.1

For OLS estimation, coefficients are reported. For NB, average marginal effects are reported.

イロト イポト イヨト イヨト

	Data	Conclusion

1 Introduction

- 2 A model
- 3 Empirical strategy
- 4 Data
- 5 Results

6 Conclusion

		Data	Conclusion
Conclusion			

- Main findings:
 - Market concentration is not necessarily harmful to vendors security provision behavior.
 - Explanation: here, firms compete in web browser's (security) quality because revenues come from web browsing traffic
 - However, the positive effect of market concentration is less clear when a firm is highly dominant.
- The closest paper to ours: Arora et al. (2010) Competition and patching of security vulnerabilities: An empirical analysis. Information Economics and Policy
- No other theoretical or empirical studies on quality vs. competition of free products/software

イロト イポト イヨト イヨト

The effect of competition intensity on software security

				Data		Conc
using as Co	ncentration:		-	-n	Н	HI
			OLS	NB	OLS	NB
Concentration			-5.483**	-4.794**	-85.35**	-114.3***
			(2.422)	(2.314)	(42.14)	(42.00)
vulnerability	severity		-5.210**	-5.308**	-5.704***	-6.219**
-	-		(2.050)	(2.567)	(2.188)	(2.593)
vulnerability	/_type dummies		. ,	. ,	. ,	. ,
<i>cw</i> e119 (Im	proper Restriction of O	perations [])	-6.874	-3.904	-7.152	-3.399
		,	(10.65)	(10.50)	(10.63)	(10.46)
			·	· /		/
<i>cw</i> e704 (Inc	correct type conversion	or cast)	-8.606	-8.168	-7.544	-5.299
		,	(11.15)	(46.92)	(11.13)	(48.28)
software_ag	e		0.755*	0.795	0.789*	0.798
-			(0.438)	(0.530)	(0.442)	(0.527)
apple			-10.11	-13.92**	-11.54*	-14.95**
			(6.888)	(6.838)	(6.884)	(6.696)
google			-23.21*	-31.13***	-23.46*	-32.61***
			(12.16)	(7.648)	(12.01)	(7.526)
mozilla			-23.98***	-26.37***	-24.65***	-27.78***
			(8.303)	(6.776)	(8.172)	(6.645)
disclosure			-48.64***	-48.37***	-48.99***	-49.04***
			(3.611)	(4.462)	(3.631)	(4.474)
qyear			-1.513***	-1.513***	-1.605***	-2.276***
			(0.293)	(0.293)	(0.316)	(0.659)
Constant			458.7***	. ,	549.1***	. ,
			(71.85)		(90.34)	
Observation	IS		586	586	586	586
R-squared			0.388		0.386	
Wald chi-sq	uared			236.43		239.51
VIF for Cor	ncentration		1.40		1.68	
		Robust standard er	rors in parent	theses		
		*** n<0.01 ** r	~0.05 * n~	-01		N E M E

The effect of competition intensity on software security