
Attack-Aware Cyber Insurance of Interdependent

Computer Networks

Rui Zhang Quanyan Zhu ∗

May 22, 2017

Abstract

Cyber insurance is a valuable approach to mitigate further the cyber risk and its loss in

addition to the deployment of technological cyber defense solutions such as intrusion de-

tection systems and firewalls. An effective cyber insurance policy can reduce the number

of successful cyber attacks by incentivizing the adoption of preventative measures and

the implementation of best practices of the users. To study cyber insurance in a holistic

manner, we first establish a bi-level game-theoretic model that nests a zero-sum game

in a moral-hazard type of principal-agent game to capture complex interactions between

a user, an attacker, and the insurer. The game framework provides an integrative view

of the cyber insurance and enables a systematic design of incentive compatible and

attack-aware insurance policy. The framework is further extended to study a network

of users and their risk interdependencies. We completely characterize the equilibrium

solutions of the bi-level game. Our analytical results provide a fundamental limit on

insurability, predict the Peltzman effect, and reveal the principles of zero operating

profit and the linear insurance policy of the insurer. We provide analytical results

and numerical experiments to corroborate the analytical results and demonstrate the

network effects as a result of the strategic interactions among three types of players.

Keywords: Cyber Insurance, Network Security, Moral Hazard, Information Asymme-

try, Network Effects, Security Games, Mechanism Design.
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1 Introduction

Network security becomes more challenging than ever as today’s computer networks become

increasingly complex. The deployment of defense mechanisms such as firewalls [1], intrusion

detection systems [2], and moving target defenses [3] can effectively reduce the success rate

of cyber attacks but cannot guarantee perfect network security as attacks are becoming

more stealthy and sophisticated [4]. Network users can still be hacked, resulting in severe

data breaches, disruption of services and financial losses. Cyber insurance provides users a

valuable additional layer of protection to mitigate potential vulnerabilities to unknown threats,

hacking, and human errors. An incentive compatible cyber insurance policy could help reduce

the number of successful cyber attacks by incentivizing the adoption of preventative measures

in return for more coverage and the implementation of best practices by basing premiums on

an insured level of self-protection [5, 6].

Different from the traditional insurance paradigm, cyber insurance has two unique features.

Firstly, the cyber insurance policy should be designed to mitigate risks that are not created by

natural failures but by intelligent attackers who deliberately inflict damages on the network.

The behaviors of the attackers play an equally important role in the design of insurance policy

as the user behaviors do. An effective scheme of cyber insurance should take into account the

adversary model as well as the user behaviors. Secondly, cyber risks can propagate over a

network. The insecurity of one user can directly affect the security of users with whom he is

connected (see Fig. 1). The global network failures could be caused and exacerbated because

of the lack of protection of one single user. Hence, the cyber insurance needs to understand

the interlinkages and the interdependencies among users and the insurance policy should be

used not only to mitigate individual risks but also the systemic cyber risks over the network.

To address these two features of the cyber insurance, we first establish a bi-level game-

theoretic model to capture the complex interactions among different types of players. Three

parties coexist in the framework, including users, attackers, and insurers. Each one of them

has distinct objectives. The users aim to reduce its cyber risk by deploying cyber defense

1



Figure 1: Cyber insurance over a network. Nodes and links of the network are represented
by black circles and solid black lines. Three parties co-exist in this network. The blue
icons represent users who employ the service of the network while the red icons represent
attackers who launch cyber attacks with malicious ambitions. The users aim to mitigate the
cyber-security loss in the network using local cyber defense strategies as well as the cyber
insurance provided by the insurer, represented by the green icon. The networked environment
increases the risks of the users as cyber attacks can spread to neighboring nodes, which is
indicated by red dotted lines. As a result, the user at node 1 and 4 faces cyber risks even
though the nodes are not directly compromised by the attacker.

mechanisms, such as intrusion detection/prevention systems [2,7], honeypots [8], and route

mutations [9], and at the same time adopting cyber insurance as an additional layer of

protection to mitigate its loss, including data breaches and network damage. Attackers are

adversaries who aim to inflict damages on the nodes by strategically choosing efficient attack

strategies. An insurer is a person or company that underwrites an insurance risk by designing

an incentive compatible cyber-insurance policy that includes a premium and the level of

coverage.

To capture individual objectives and their interdependencies in an integrative framework,

we build on the recent game-of-games concept [10] in which one game is nested in another

game to provide an enriched game-theoretic model to capture complex interactions. In our

framework, a zero-sum game is used to capture the conflicting goals between an attacker

and a defender where the defender aims to protect the system for the worst-case attack. In

addition, a moral-hazard type of principal-agent game with incomplete information is used to

model the interactions between the insurer and the user. The user has a complete information
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about his action while the insurer cannot directly observe it but indirectly measures the

loss as a consequence of the user’s security strategy. The zero-sum game is nested in the

incomplete information game to constitute a bi-level problem which provides a holistic model

for designing attack-aware insurance policy by taking into account the cyber attack models

and the rational behaviors of the users.

We further extend the one-user game framework to a network of N nodes to investigate

the impact of the network parameters on the cyber risks of the entire network for the case

when the network is controlled by one administrator and the case when the network is fully

distributed. The game-of-games concept can be used to capture the complex interactions

where the outcome of a bi-level game at one node will influence the outcome of another

game at the neighboring node. We show that the interactions between users and attackers at

each node constitute zero-sum games, whose outcomes are influenced by the actions of other

players’ at other nodes with network effects. The insurers’ insurance policies at each node

are coupled due to the network coupling between users.

The major contributions of the paper can be summarized as follows:

• We propose a bi-level game-theoretic framework that incorporates a zero-sum security

game nested with a moral-hazard type of principal-agent model. The network equilib-

rium concepts developed in this work provides methods to assess interdependent cyber

risks and design effective attack-aware insurance policy.

• We study four distinct scenarios including single node case, centralized and decentralized

network cases. For each scenario, we show that the optimal insurance mechanism design

problems are linear programs, and their solutions are completely characterized and

compared.

• We show the zero-operating profit principle of the insurer under the optimal insurance

policy. The insurer’s profit is determined by the premium subscription fee, which is

found to be a linear function of the coverage level.
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• The equilibrium of the bi-level game predicts the Peltzman effect [11] in which the user

and attacker have no incentives to take actions when they are fully insured.

• We use analytical results and numerical experiments to show that the network coupling

among users requires users to spend more efforts of protection at the equilibrium, and

as network size increases, we see that the saddle-point equilibrium solutions of the user

and the attacker exhibit less network effects.

In the previous discussion, we have assumed that the user’s risk is static and does not

change with time. However, both the user and the attacker can change their actions at some

point, and the cyber system can also be different due to damage, failure, or upgrade. Thus,

the risks of the user will vary with time, and the user will encounter dynamic losses. To

capture the shifts of the user’s risks in a time-varying world, we further extend our static

models into dynamic settings. Stochastic differential equations and the Markov decision

processes are used to model the dynamic environment and the user’s behaviors. We further

present two numerical examples and show the Peltzman effect where the user tends to act

riskily when he is protected by the insurance.

1.1 Related Works

The challenges of cyber security are not only technical issues but also economic and policy

issues [6]. Recently, the use of cyber insurance to enhance the level of security in cyber-

physical systems has been studied [12,13]. While these works deal with externality effects of

cyber security in networks, few of them take into account in the model the cyber attack from

a malicious adversary to distinguish from classical insurance models. In [14], the authors have

considered direct and indirect losses, respectively due to cyber attacks and indirect infections

from other nodes in the network. However, the cyber attacks are taken as random inputs

rather than a strategic adversary. The moral hazard model in economics literature [15,16]

deal with hidden actions from an agent, and aims to address the question: How does a
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principal design the agent’s wage contract to maximize his effort? This framework is related

to insurance markets and has been used to model cyber insurance [17] as a solution for

mitigating losses from cyber attacks. In addition, in [18], the authors have studied a security

investment problem in a network with externality effect. Each node determines his security

investment level and competes with a strategic attacker. Their model does not focus on the

insurance policies and hidden-action framework. In this work, we enrich the moral-hazard

type of economic frameworks by incorporating attack models, and provide a holistic viewpoint

towards cyber insurance and a systematic approach to design insurance policies. The network

effect on security decision process has been studied in [19]. The authors have considered a

variation of the linear influence networks model in which each node represents a network

company and directed links model the positive or negative influence between neighbor nodes.

1.2 Organization of the Paper

The paper is organized as follows. In section 2, we describe the bi-level game-theoretic

framework of cyber insurance for computer networks. We introduce four distinct cases of

the cyber insurance model. In Section 3, we analyze the case when the network only has

one node. Section 4 and Section 5 present the case of networks with N nodes. In addition,

Section 4 deals with multiple users and attackers, with multiple distributed insurers and a

single centralized insurer over networks. Section 5 deals with a single user, a single attacker

and a single insurer over a network. Section 6 presents numerical experiments to corroborate

the results. The paper is concluded in Section 8.

2 Overview of the Cyber-Insurance Framework

This section presents an overview of the bi-level game-theoretic framework of cyber insurance

for computer networks to describe the complex interactions among three parties of players:

Users, Attackers and Insurers.
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Users are the nodes of a computer network that face cyber threats from an attacker,

making users vulnerable to data breaches, task failures, and severe financial losses.

Attackers are the adversaries who launch cyber-attacks to acquire private data from users

or cause disruptions of the network services.

Insurers are persons or companies that underwrite insurance risks by providing users

incentive compatible cyber-insurance policies that include premiums and levels of coverage.

The premium is a subscription fee that is paid by the users to participate in the insurance

program while the coverage level is the proportion of loss that will be compensated by the

insurer as a consequence of successful cyber attacks.

2.1 Users, Attackers and Insurers: Objectives and Actions

The objective of the users is to find an efficient way to mitigate the loss due to the cyber

attacks. To this end, there are two main approaches. One is to deploy local protections,

such as firewalls and intrusion detection systems (IDSs) [2, 20], frequent change of passwords,

timely software patching and proactive moving target defenses [3]. These defense mechanisms

can reduce the success rate of the attacks, but cannot guarantee perfect network security

for users. There are still chances for the users to be hacked by the attackers. The other

approach is to adopt cyber-insurance. The users pay a premium fee so that the loss due to

cyber attacks can be compensated by the insurer. This mechanism provides an additional

layer of mitigation to reduce the loss further that the technical solutions of the first approach

cannot prevent. To capture the two options in our framework, we allow users to decide their

protection levels as well as their rational choice of participation in the insurance program as

illustrated in Fig. 2.

The objective of the attackers is to inflict as much damage to the users as possible by

launching various cyber-attacks, such as node capture attacks [21] and denial of services

(DoS) attacks [22]. Note that the damage is often positively correlated with the loss of the

user. For example, the denial of service attack on networks will disrupt the normal operation
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of the infrastructures (e.g. blackout, airline breakdown). The security of the disruption will

cause financial losses of the infrastructure users. Moreover, the goal of the attacker may

not just stop at compromising the system but aim at higher objectives. For example, in

advanced persistent threats [23], the attacker has to compromise multiple resources to attain

its goal. In the case that the attacker successfully obtains the banking information or privacy

information of the user is to steal money or ransom. The final objective of attacking the

system is for profit. As a result, the objective of the attackers is taken to maximize the losses

of the users by deciding the attack levels.

The insurers have two objectives. One is to make a profit from providing the insurance,

and the other one is to reduce the average losses of the users, which is also directly related

to the cost of the insurer. An insurer’s problem is to determine the subscription fee and

the coverage levels of the insurance. Note that the average losses depend on both the users’

local protection levels and the attackers’ attack levels. Moreover, the rational users will only

enroll in the insurance when the average reduction in the loss is higher than or equal to the

premium he paid to the insurer. As a result, the insurer’s problem can be seen as finding an

optimally acceptable insurance policy that makes profits while reducing the users’ average

losses.

2.2 Users, Attackers and Insurers: Information

In this subsection, we further identify the information of the users, attackers and insurers.

The user is assumed to have complete information about the attacker and the insurer.

The complete information assumption of the user on the attacker captures the fact that the

user aims to find a robust defense strategy against potential attackers. Since the insurer

announces the insurance policy to the user so that the user can decide whether to accept it

or not, the user has complete information of the insurer’s policy.

The attacker is assumed to have complete information about the user and the insurer. This

assumption is used to capture two important facts, one is due to Kerckhoffs’s principle [24]
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Figure 2: Bi-level game over networks: In a networked environment, the users and the
attackers constitute zero-sum games at each node, the outcome of which are used by the
insurers to design insurance policies. The interactions between the insurers and the users
can be viewed as leader-follower type of games. Note that users and attackers have full
information about the network, the other players in this network, and also the insurers’
policies while the insurers have no information on the users’ or attackers’ actions but they
know the losses of the users. This type of incomplete information game is a typical moral
hazard problem.

which postulates that “the enemy knows the system”; the second fact is due to the increasingly

advanced persistent threats (APTs) that enable attacks to behave stealthily and acquire

knowledge about the system [23]. The complete information of the attacker enables us to

anticipate the interactions of the user and the insurer under the worst-case attack scenarios.

The insurer is assumed to have incomplete information about the user and the insurer.

The insurer cannot directly observe the defense actions and attack actions of the users and

the attackers, respectively. However, the insurer can measure the loss of the user as he will

provide coverage to mitigate that. Moreover, we assume that the insurer also knows the costs

of conducting certain levels of local protections and attacks, which can be interpreted as the

market prices for providing security services. For example, the costs of using firewalls and

hiring hackers can be found in the market.

2.3 Bi-Level Game Framework

The objectives, actions and information of users, attackers, and insurers are all intertwined.

We use a bi-level game to capture the complex interactions among the three parties, which is
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illustrated in Fig. 2. The conflicting objectives of a user and an attacker can be captured by

a local game at each node in which the user determines a defense strategy while the adversary

chooses an attack strategy. The outcome of the local interactions at each node determines

its cyber risk. The cyber insurance is then used as an additional method to further reduce

the loss due to the cyber risk. Hence as illustrated in Fig. 2, the insurers are the leaders

or principals in the framework who design insurance policies for the users while the users

can be viewed as followers or agents who determine their defense strategies under a given

insurance policy.

One main feature of the cyber-insurance is the information asymmetry between the

insurers and the users. The insurer cannot directly observe the defense actions of the users

but can be informed of the average losses of the users and the costs of conducting certain

levels of local protections and attacks. Hence, this fact leads to a moral-hazard principal-agent

model between an insurer and a user [25]. By further taking into account the attack behaviors,

we can see that it is natural to establish a bi-level framework. The bottom level consists

of multiple local games between a user and an attacker while the top level consists of the

principal-agent games between a user and an insurer. Since both the user and the attacker

have complete information, the conflicting objectives of them can be captured as a zero-sum

game, where the assessed risks represent the worst-case scenario which will allow users to

make attack-aware insurance decisions.

The users are connected in a network. The cyber risks of the users over the network

are interdependent. From a game-theoretic perspective, the bi-level game with N users, N

attacks and N insurers over a network can be viewed as a game of games in which N one-user,

one-attacker and one-insurer games interact with each other, making the outcome of one

game dependent on the others. This unique structure of games over networks is illustrated in

Fig. 3. In this work, we will investigate several structures of network games under different

contexts described below:

• Case 1: 1 Node-1 User-1 Attacker-1 Insurer: We consider a network with one
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node. There co-exist 1 user, 1 attacker and 1 insurer interacting with each other at this

node. This case excludes network effects.

• Case 2(a): N Nodes-N Users-N Attackers-N Insurers: We consider a network

with N nodes. We assume that each node has one user, one attacker and one insurer.

This case extends Case 1 to a fully distributed network game problem in which the

game of one node interacts with a game of another node.

• Case 2(b): N Nodes-N Users-N Attackers-1 Insurer. This case differs from the

preceding case in that there exists only 1 insurer in this network. The insurer’s policy

is designed by viewing the network as a whole system.

• Case 3: N Nodes-1 User-1 Attacker-1 Insurer. This case corresponds to a

centralized insurer who designs the entire network insurance policy while one network

administrator coordinates the defense strategies of all nodes against one attacker.

3 Case 1: 1 Node-1 User-1 Attacker-1 Insurer

In this section, we consider Case 1 with 1 node, 1 user, 1 attacker, and 1 insurer. We

first formulate the game between the user and the attacker, then we describe the insurer’s

problem under the equilibrium of the user and the attacker’s game. An illustration of the

cyber-insurance model of Case 1 is shown in Fig. 4. This case lays the basic cyber-insurance

framework for understanding multi-player scenarios in Section 4 and 5.

3.1 Zero-Sum Game between User And Attacker

Let pu ∈ [0, 1] and pa ∈ [0, 1] denote the local protection level of the user and the attack

level of the attacker. On one hand, a large pu indicates a cautious user while a small pu

indicates that the user is reckless. A reckless user may click on suspicious links of received

spam emails, fail to patch the computer system frequently, and leave cyber footprints for an
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(a) Case 1 (b) Case 2(a)

(c) Case 2(b) (d) Case 3

Figure 3: Different cases of the bi-level game between users, attackers and insurers. Black
circles indicate the nodes of the network. Black dotted lines represent the network connections
between neighboring nodes. In Case 1, the network has 1 node, and there exist 1 user, 1
attacker, and 1 insurer. In Case 2(a) and 2(b), the network has 4 nodes. Each node has 1
user and 1 attacker. Case 2(a) has 4 insurers corresponding to each node while Case 2(b) has
only 1 insurer that announces insurance policies to each node. In Case 3, the network has
4 nodes, but there exist only 1 user, 1 attacker and 1 insurer in this network. Each player
makes a decision at a node.

11



Figure 4: Illustration of the interactions between three players: The action pair (pu, pa)
chosen by the user and the attacker results in a risk level not directly observable by the
insurer. The insurer designs an insurance policy that includes a premium subscription fee
and the coverage level to cover part of the loss due to the cyber attack.

adversary to acquire system information. On the other hand, a large pa indicates a powerful

attacker, and a small pa indicates a powerless attacker. The abstraction of using pu and pa

captures the effectiveness of a wide range of heterogeneous defense and attack strategies

without a fine-grained modeling of individual mechanisms. This will allow us to focus on the

consequence of security issues and the choice of a mechanism that induces the result.

The action pair of the user and the attacker (pu, pa) determines the risk level of the user

R ∈ R≥0. A smaller pu and a larger pa indicate a higher risk level of the user. We use the

following risk function r to denote the connections between the user’s and the attacker’s

actions and the risk level of the user.

Definition 1 Risk Function r(pu, pa) : [0, 1]2 → R≥0 gives the risk level R of the user with

respect to the user’s local protection level pu and the attacker’s attack level pa. Moreover, it is

assumed to be continuous on (0, 1]2, convex and monotonically decreasing on pu ∈ [0, 1], and

concave and monotonically increasing on pa ∈ [0, 1].

Note that the monotonicity in pu ∈ [0, 1] indicates that a larger local protection level of

the user leads to a smaller risk level while the monotonicity in pa ∈ [0, 1] indicates that a

larger attack level of the attacker leads to a larger risk level. Since r is convex on pu, the risk

decreases slower when the user adopts a larger local protection level. Since r is concave on
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pa, the risk increases slower when the attacker conducts a higher attack level. Without loss

of generality, we use the following risk function,

r(pu, pa) = ln(
pa
pu

+ 1). (1)

Similar types of functions have also been widely used in jamming attacks in wireless networks

[26, 27] and rate control problems [7, 28]. Under the risk level of R, the economic loss of

the user can be represented as a random variable X measured in dollars, which can be

expressed as X = G(R, θ), where θ is a random variable with probability density function g

that captures the uncertainties in the measurement or system parameters. For example, a

data breach due to the compromise of a server can be a consequence of low security level

at the user end. The magnitude of the loss depends on the content and the significance of

the data, and the extent of the breach. The variations in these parameters are captured by

the random variable θ. Since the risks of being attacked cannot be perfectly eliminated, the

user can transfer the remaining risks to the third party, the insurer, by paying a premium or

subscription fee T for a coverage of S(X) when he faces a loss of X, where S : R≥0 → R≥0 is

the insurance coverage function that reduces the loss of the user if he is insured. Thus, the

effective loss ξ to the user becomes ξ = X − S(X).

Given the attacker’s action pa and the insurer’s coverage function S, the user aims to

minimize the average effective loss by finding the optimal local protection level p∗u. Such

objective can be captured by the following optimization problem

min
pu∈[0,1]

E[H(ξ)] = E[H(X − S(X))], (2)

where H : R≥0 → R≥0 is the loss function of the user, which is increasing on ξ. Note that

the expectation is taken with respect to the statistics of θ. The subscription fee T is not

included in this optimization problem, as the fee is a constant decided by the insurer.

The loss function H(ξ) indicates the user’s risk propensity. A convex H(ξ) indicates that
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the user is risk-averse, i.e., the user cares more about the risk, while a concave H(ξ) indicates

that the user is risk-taking, i.e., he cares more about the cost, rather than the risk. A linear

H(ξ) indicates that the user is risk-neutral. In this paper, we consider a risk-averse user, and

use a typical risk-averse loss function that H(ξ) = eγξ with γ > 0, where γ indicates how

much the user cares about the loss.

Note that the loss function in (2) can be expressed explicitly as a function of X. Thus,

Problem (2) can be rewritten by taking expectations with respect to the sufficient statistics

of X. Let f be the probability density function of X. Clearly, f is a transformation from

the density function g (associated with the random variable θ) under the mapping G. In

addition, f also depends on the action pair (pu, pa) through the risk variable R. Therefore, we

can write f(x|pu, pa) to capture the parameterization of the density function. Furthermore,

we assume that X follows an exponential distribution, i.e., X ∼ exp( 1
R

), where R := r(pu, pa)

is the risk level of the user. The exponential distribution has been widely used in risk and

reliability analysis [29–32]. Thus the density function can be written as,

f(x|pu, pa) =
1

R
e−

1
R
x =

1

r(pu, pa)
e−

1
r(pu,pa)

x =
1

ln( pa
pu

+ 1)
e
− 1

ln(
pa
pu

+1)
x
,∀x ∈ R≥0.

The average amount of loss given actions pu and pa is E(X) = R = r(pu, pa) = ln( pa
pu

+ 1).

For small pu and large pa, the risk level of the user R tends to be large, which leads to a

large average loss of the user. We further assume that the insurance coverage S(X) is linear

in X, i.e., S(X) = sX, where s ∈ [0, 1] indicates the coverage level of the insurance. Hence,

the average effective loss given the insurance coverage level s and the action pair (pu, pa) is

E(ξ) = E(X − S(X)) = E((1− s)X) = (1− s)E(X) = (1− s)ln( pa
pu

+ 1). Furthermore, we
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have:

E[H(ξ)] :=

∫
x∈R≥0

H(x− S(x))f(x|pu, pa)dx

= 1
R

∫ ∞
0

e[γ(1−s)−
1
R
]xdx

= 1
1−γ(1−s)R

= 1
1−γ(1−s)ln( pa

pu
+1)

.

(3)

The third equality holds when

γ(1− s)− 1

R
< 0, i.e., 1− γ(1− s)ln(

pa
pu

+ 1) > 0. (4)

Otherwise, the loss will be infinite, i.e., E[H(ξ)]→∞. In this regime, no insurance scheme

can be found to mitigate the loss. Condition (4) gives a feasible set of parameters under

which cyber insurance is effective and provides a fundamental limit on the level of mitigation.

Note that minimizing (3) is equivalent as minimizing γ(1− s)ln( pa
pu

+ 1) under the feasible

equality (4). The user’s problem (2) can be rewritten as follows:

min
pu∈[0,1]

Ju(pu, pa, s) := γ(1− s)R = γ(1− s)ln( pa
pu

+ 1)

s.t. 1− γ(1− s)ln( pa
pu

+ 1) > 0.

(5)

Problem (5) captures the user’s objective to minimize the average effective loss given the

attack level pa and the insurance coverage level s. On the other hand, the attacker aims to

find the optimal attack level p∗a that maximizes the average loss of the user given user’s local

protection level and insurer’s coverage level s. Such conflicting interests of the user and the

attacker constitutes a zero-sum game, which takes the following minimax or max-min form,

min
pu∈[0,1]

max
pa∈[0,1]

K(pu, pa, s)

s.t. (pu, pa) ∈ Su,a(s).
or

max
pa∈[0,1]

min
pu∈[0,1]

K(pu, pa, s)

s.t. (pu, pa) ∈ Su,a(s).
(6)
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where

K(pu, pa, s) := γ(1− s)R + cupu − capa = γ(1− s)ln(
pa
pu

+ 1) + cupu − capa, (7)

Su,a(s) :=

{
(pu, pa)

∣∣∣1− γ(1− s)ln(
pa
pu

+ 1) > 0

}
. (8)

The first term of the objective function K captures the average effective loss given an insurance

coverage level s, the local protection level pu and the attack level pa. The second and third

terms indicate the cost of the user and the attacker, respectively. cu ∈ R>0 is the cost

parameter of the user. A larger cu indicates that local protection is costly. ca ∈ R>0 denotes

the cost parameter of the attacker to conduct an attack level of pa. A larger ca indicates

that a cyber-attack is costly. Note that cu and ca can be interpreted as the market price

of local protections and cyber-attacks, and they are known by the insurer. The constraint

indicates the feasible set of the user. Note that if s, pu, and pa are not feasible, K is taken

to be an infinite cost. Minimizing K(pu, pa, s) captures the user’s objective to minimize

the average effective loss with the most cost-effective local protection level. Maximizing

K(pu, pa, s) captures the attacker’s objective to maximize the average effective loss of the

user with the lowest attack level. Note that the minimax form of (6) can also be interpreted

as a worst-case solution for a user who uses the best security strategies by anticipating the

worst-case attack scenarios.

Furthermore, Problem (6) yields a saddle-point equilibrium (SPE) to the insurance

coverage level s which can be defined as follows:

Definition 2 Let Su(s), Sa(s) and Su,a(s) be the action sets for the user and the attacker

given an insurance coverage level s. Then, the strategy pair (p∗u, p
∗
a) is a saddle-point equilib-

rium (SPE) of the zero-sum game defined by the triple

Gz := 〈{User, Attacker}, {Su(s),Sa(s),Su,a(s)}, K〉,
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if

K(p∗u, pa, s) ≤ K(p∗u, p
∗
a, s) ≤ K(pu, p

∗
a, s), ∀pu ∈ Su(s), pa ∈ Sa(s), (pu, pa) ∈ Su,a(s) (9)

where K and Su,a(s) is the objective function and feasible set defined in (7) and (8).

The definition indicates that if a pair (p∗u, p
∗
a) satisfies (9), then it is a SPE of the game

between the user and the attacker to the insurer’s insurance policy. Note that under a given

insurance coverage level s, (p∗u, p
∗
a) must satisfy the feasible constraint (4). Thus, we aim to

look for a constrained SPE of the zero-sum game with coupled constraints on the strategies

of the players.

Proposition 1 Given an insurance coverage level s that satisfies

1− γ(1− s)ln(
cu
ca

+ 1) > 0, (10)

there exists a unique SPE of the zero-sum game defined in Definition 2, given by

p∗u = γ(1−s)
cu+ca

, p∗a = cuγ(1−s)
ca(cu+ca)

. (11)

Proof. See Appendix A.

Proposition 1 shows that the SPE of the zero-sum game between the user and the attacker

is related to the insurer’s policy s. Note that when s is large, both the p∗u and p∗a is small,

indicating that both the user and the attacker will take weak actions. Moreover, we have the

following observations regarding the SPE.

Remark 1 (Peltzman Effect) When the insurer provides a higher coverage level s, the

SPE of the user p∗u tends to be smaller, i.e., the user takes a weaker local protection. Such

risky behavior of the user in response to insurance is usually referred as Peltzman effect [11].
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Corollary 1 (Invariability of The SPE Ratio) The SPE satisfies p∗ucu = p∗apa. Spe-

cially, when p∗u, p
∗
a 6= 0, p∗a

p∗u
= cu

ca
, i.e., the ratio of the actions of the user and the attacker

is only related to cu and ca, and it is independent of the insurer’s policy s. Note that when

cu = ca,
p∗a
p∗u

= 1, i.e., the SPE becomes symmetric, as p∗u = p∗a = γ(1−s)
cu+ca

= γ(1−s)
2cu

= γ(1−s)
2ca

.

Remark 2 (Constant Cost Determined SPE Risk) The user has a constant SPE risk

level R∗ = r(p∗u, p
∗
a) = ln( p

∗
a

p∗u
+ 1) = ln( cu

ca
+ 1) at SPE, which is determined by the costs of

adopting protections and launching attacks. The ratio is independent of coverage level s.

Corollary 2 At SPE, the average direct loss of the user is E(X) = R∗ = ln( cu
ca

+ 1), the

average effective loss of the user is E(ξ) = E((1 − s)X) = (1 − s)E(X) = (1 − s)R∗ =

(1− s)ln( cu
ca

+ 1), the average payment of the insurer to the user is E(sX) = sE(X) = sR∗ =

sln( cu
ca

+ 1).

Corollary 1 indicates the constant SPE ratio of the user and the attacker, which is

determined only by the cost parameters cu and ca, i.e., the costs for applying certain levels of

protections and attacks, respectively. As a result, the SPE risk level of the user is constant,

and only determined by the costs as shown in Remark 2. Thus, the average direct loss is

constant as shown in Corollary 2. However, when the insurance coverage level s does not

satisfy (10), the insurability of a user is not guaranteed, which is shown in the following

proposition.

Proposition 2 (Fundamental Limits on Insurability) Given an insurance coverage level

s that 1− γ(1− s)ln( cu
ca

+ 1) ≤ 0, (p∗u, p
∗
a) does not satisfy the feasible inequality (4), thus, the

average direct loss of the user E(X) → ∞, and the zero-sum game defined in Definition 2

does not admit a SPE. Thus, the user is not insurable, as the insurance policy cannot mitigate

his loss. The insurer will not also provide insurance to a user who is not insurable.

Proposition 3 Under an insurable scenario, the cost parameter of the user must satisfy

cu < ca(e
1

γ(1−s) − 1), and the local protection level of the user must satisfy pu >
γ(1−s)
ca

e
1

γ(1−s) .
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Proof. The first inequality can be easily achieved from (10). From Appendix A, given the

action of the user pu, the best action of the attacker is P ∗a (pu) = γ(1−s)
ca
− pu. By plugging

P ∗a (pu) into the feasible inequality (4), we can get pu >
γ(1−s)
ca

e
1

γ(1−s) .

It is important to note that the user must pay a subscription fee T ∈ R≥0 to be insured.

The incentive for the user to buy insurance exists when the average loss at equilibrium under

the insurance is lower than the loss incurred without insurance. Recall Corollary 2, the

average loss of the user with the subscription fee T is E(ξ) + T = (1− s)R∗ + T , which is

monotonically decreasing on s. When the user is under full coverage, the average loss with

the payment T is E(ξ) + T
∣∣
s=1

= T . When the user does not subscribe to an insurance, the

average loss is E(X) = R∗. Thus, the user has no incentive to insure if the loss under full

coverage is higher than that under no insurance, i.e., T > R∗. Moreover, for T ≤ R∗, the user

will choose to insure if the average loss under the given coverage level s is lower than under

no insurance, i.e., (1− s)R∗ + T ≤ R∗. Therefore, we arrive at the following conditions.

Condition 1 (Individual Rationality (IR-u)) The subscription fee must satisfy T ≤

Tmax := R∗ = ln( cu
ca

+ 1), so that the user prefer to subscribe the insurance.

Condition 2 (Incentive Compatibility (IC-u)) For the subscription fee T ≤ Tmax, the

user will subscribe to the insurance if the coverage level s satisfies s ≥ s0 = T
R∗

= T
ln( cu

ca
+1)

.

The user will enroll the insurance only when (IR-u) and (IC-u) constraints are satisfied. Note

that when cu is large and ca is small, Tmax is large and s0(T ) is small, i.e., when the cost of

the user to put local protections is large, and the cost of the attacker to conduct cyber-attack

is small, the price of the subscription fee is large, but the minimum coverage is low. Note

that s0 is monotonically increasing on T . Specially, when T = 0, we have s = 0, i.e., the user

will accept any coverage level when there is no charge for the insurance premium. Moreover,

when T = Tmax, we have s = 1, i.e., the user only accept a full coverage when the subscription

fee is the maximum.
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3.2 Insurer’s Problem

The insurer announces the insurance policy {s, T}, where s indicates the coverage level, T

indicates the subscription fee, and then the user’s and the attacker’s conflicting interests

formulates a zero-sum game, which yields a unique solution as shown in Proposition 1, with

the corresponding equilibrium loss as shown in Corollary 2. Note that T is the gross profit of

the insurer as he charges it from the user first, but when the user faces a loss E(X) = R∗, the

insurer must pay sE(X) = sR∗ to the user. As a result, the operating profit of the insurer

can be captured as T − sE(X) = T − sR∗, which must be larger than or equal to 0 so that

the insurer will provide the insurance. Thus, we have the following condition.

Condition 3 (Individual Rationality (IR-i)) The insurer will provide the insurance if

T − sR∗ = T − sln( cu
ca

+ 1) ≥ 0.

Recall Proposition 2, the insurer will provide the insurance when the user is insurable, i.e.,

inequality (10) must be satisfied. Thus, we reach the following proposition that indicates the

feasible coverage level.

Condition 4 (Feasibility (F-i)) The coverage level s is feasible, i.e., the user is insurable,

when s > 1− 1
γln( cu

ca
+1)

.

With the (IR-u) and (IC-u) constraints for the user and the (IR-i) and (F-i) constraints for

the insurer, the insurer’s objective to minimize the average effective loss of the user and

maximize the operating profit can be captured using the following optimization problem:

min
{0≤s≤1,T≥0}

Ji(s, T ) := γ(1− s)ln( cu
ca

+ 1) + cs(sln( cu
ca

+ 1)− T )

s.t. (IR-u), (IC-u), (IR-i), (F-i).

(12)

Minimizing the first term of the objective function captures the insurer’s objective to reduce

the loss of the user, while minimizing the second term of the objective function captures the

insurer’s objective of making a profit. Parameter cs indicates the trade-off of a safer user and
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a larger profit of the insurer. Note that the insurer cannot directly observe the actions of the

user and the attacker, but he is aware of the cost parameters cu and ca of the actions of the

user and the attacker, respectively.

Furthermore, the solution of Problem (12) and the corresponding SPE defined in Definition

2 yields an equilibrium for the bi-level game in Case 1 which can be defined as

Definition 3 Let Si be the action set for the insurer, Su(s) and Sa(s) be the action sets for

the user and the attacker given the insurance coverage level, the strategy pair (p∗u, p
∗
a, {s∗, T ∗})

is called a bi-level game Nash equilibrium (BGNE) of the bi-level game in Case 1 defined by the

triple G1 := 〈{User, Attacker, Insurer}, {Su(s),Sa(s),Si}, K, Ji〉, if {s∗, T ∗} solves Problem

(12) with the BGNE objective function J∗i , and the strategy pair (p∗u, p
∗
a) is the SPE of the

zero-sum game defined in Definition 2 with the equilibrium payoff K∗ under the insurance

policy {s∗, T ∗}.

Note that the insurer’s Problem (12) is a linear programming problem as the objective

function and all the constraints are linear in s and T . Instead of using computational methods

to solve this problem, we first observe that (IR-i) and (IC-u) together indicate that the

insurance policy s and T must satisfy

T = sR∗ = sln(
cu
ca

+ 1). (13)

Corollary 3 Equality (13) indicates the following observations:

(i) Zero Operating Profit Principle: The insurer’s operating profit is always 0, as T−sR∗ =

0.

(ii) Linear Insurance Policy Principle: The insurer can only provide the insurance policy s

and T that satisfies (13), so that the user subscribes to the insurance provided by the

insurer
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Corollary 3 reveals a zero operating profit principle and a linear insurance policy principle

for the insurer. These principles hold in Case 2 and 3 as well. Moreover, the linear insurance

policy indicates that the ratio of the subscription fee and the coverage level only depends on

the SPE risk R∗, which is determined by the cost parameters seen in Remark 2. It provides

a fundamental principle for designing the insurance policy.

As a result, the optimal insurance for the insurer can be summarized using the following

proposition.

Proposition 4 The optimal insurance policy for the insurer is

s∗ = 1; T ∗ = Tmax = ln(
cu
ca

+ 1). (14)

Proposition 4 shows that a full coverage level and a maximum subscription fee are the

optimal insurance policy of the insurer. Together with Proposition 1, we have the following

proposition of the BGNE of the bi-level game in Case 1.

Proposition 5 The bi-level game of Case 1 admits a unique BGNE solution (p∗u, p
∗
a, {s∗, T ∗}) =

(0, 0, {1, ln( cu
ca

+ 1)}). At the equilibrium, the insurer provides a full coverage for the user

and charges a maximum subscription fee from the user. The user and the attacker have no

incentives to take actions at the equilibrium as the cost would be too high. The equilibrium

also demonstrates that cyber insurance will effectively mitigate the loss.

4 Case 2: N Nodes-N Users-N Attackers

In this section, we present Case 2(a) and Case 2(b) with N nodes, N users, N attackers and

2 types of insurers, N insurers and 1 insurer over the network. One illustration is shown in

Fig. 3(b)(c). We further assume that the network is well-connected, i.e., any two nodes in

this network are connected by a path. Note that there exist an user and an attacker at each

node n ∈ {1, ..., N}. We first formulate the game between the users and the attackers, then
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we describe two types of insurers’ problems.

4.1 Game of N Zero-Sum Games Between Users and Attackers

In a networked environment, cyber-attacks may affect a node through his neighboring nodes.

Typical examples of such cyber-attacks are worms and trojans that propagate into a network

of computers one by one, using mail contacts or any application data [33]. At each node n,

there exists a zero-sum game between user n and attacker n. Moreover, N zero-sum games

at this network induce a network game of N users and N attackers. Let pu,n, pu,n, sn, Tn

denote the local protection level of the user, the attack level of user, the insurance coverage

level and the subscription fee at node n ∈ {1, · · · , N}, respectively.

The risk level Rn of node n does not depend only on the user’s action pu,n and the

attacker’s action pa,n at this node, but also on all the other players’ actions at other nodes

due to the network effects. Thus, we assume that for user n, his risk level Rn is given by:

Rn := rn(pu,n, pa,n) + η
N∑
m=1

wmnRm.

Note that the first term denotes the local risk level caused by the actions of user n and attacker

n. Following a similar definition of the local risk level in (1), rn(pu,n, pa,n) = ln( pa,n
pu,n

+ 1). The

second term denotes the risk level caused by network effects. Note that wmn indicates the

probability that an attack on node m leads to an attack on node n, and 0 ≤ η ≤ 1 indicates

the scalability parameter of the network effect that models the attenuation of an attack from

a neighboring node. The closer is η to 1, the stronger is the network effect between the nodes.

Indeed, the network effect increases the risk level of the users, which leads to a negative

impact on the cyber-security. Typically, we have

wnn = 0,
N∑
n=1

wmn = 1, ∀n = 1, ..., N, (15)

meaning that node n does not contaminate itself, and an attack on node m generates an
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attack to node n with probability wmn. Thus, the vector of risk levels R = [R1, ..., RN ]T

can be expressed by R = r + ηWTR, where r = [r1(pu,1, pa,1), ..., r1(pu,N , pa,N)]T and WT is

the transpose of matrix W. Note that W is a right irreducible stochastic matrix with all

diagonal elements being 0. Thus, we have (IN − ηWT )R = r. Note that IN is the identity

matrix of size N . Furthermore, we have the following useful facts.

Proposition 6 Let W∗ = (IN − ηWT )−1 if the inverse exists, we have

(i) The inverse of IN − ηWT always exists.

(ii) W∗ is a nonnegative matrix with w∗nn > 1, w∗nm ≥ 0,∀n,m ∈ {1, ..., N} and m 6= n.

(iii) 1TNW∗ = 1
1−η1

T
N , where 1N is a column vector of size N with every elements being 1.

As a result,
∑N

m=1w
∗
mn = 1

1−η ,∀n ∈ {1, ..., N}, i.e, the sum of each column of W∗ are

the same and constant, which is equal to 1
1−η .

Proof. See Appendix D.

With this result, we have R = W∗r. The risk level for all node n, due to network effect,

is then given by:

Rn(pu,n, pa,n; pu,−n, pa,−n) =
N∑
m=1

w∗nmrm(pu,m, pa,m), ∀n = 1, ..., N.

Note that pu,−n = {pu,1, ..., pu,n−1, pu,n+1, ...pu,N}, pa,−n = {pa,1, ..., pa,n−1, pa,n+1, ...pa,N}. When

there is no network effect, i.e., W = 0N , we have W∗ = IN , as a result, Rn(pu,n, pa,n; pu,−n, pa,−n) =

rn(pu,n, pa,n), i.e., the zero-sum game at each node is equivalent to Case 1. Due to the network

effect, the average damage E[Xn] =
∑N

m=1w
∗
nmrm(pu,m, pa,m) > rn(pu,n, pa,n), because w∗nn > 1

and w∗nm ≥ 0 for n 6= m. It means that the network effect has a negative impact as expected.

As nodes are connected, the level of risk will increase.

At each node n, the conflicting interests of the user n and the attacker n constitute a

zero-sum game. Different from Case 1, the risk level at each node are coupled with the risk

levels of the other nodes, and thus, the average effective loss is dependent on the actions
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taken by other nodes. Following a similar reasoning of Case 1 in Section 3, we can formulate

the minimax or max-min problem at each node n with

Kn(pu,n, pa,n, sn; pu,−n, pa,−n) := γn(1− sn)
N∑
m=1

w∗nmrm(pu,m, pa,m) + cu,npu,n − ca,npa,n, (16)

Su,a,n :=

{
(pu,n, pa,n)

∣∣∣∣∣1− γn(1− sn)

(
w∗nnln(

pa,n
pu,n

+ 1) +
∑
m6=n

w∗nmln(
pa,m
pu,m

+ 1)

)
> 0

}
.

(17)

The first term of the objective function Kn captures the average effective loss given an

insurance coverage level sn, a local protection level pu,n and an attack level pa,n. The second

and third terms indicate the cost of user n and attacker n, respectively, with cu,n ∈ R>0 and

ca,n ∈ R>0 being the cost parameters of user n and attacker n, respectively. (17) indicates

the feasible set of node n. Note that the feasible inequality in (17) are coupled with other

nodes.

Furthermore, the zero-sum game between user n and attacker n at node n yields a

saddle-point equilibrium which can be defined as follows.

Definition 4 At node n ∈ {1, ..., N}, given the actions of players (pu,−n, pa,−n) and the

corresponding risk levels R−n at other nodes, and the network parameters η, W∗, let Su,n(sn)

Sa,n(sn), and Su,a,n(sn) be the action sets for user n and attacker n given an insurance coverage

level sn, then the strategy pair (p∗u,n, p
∗
a,n) is a saddle-point equilibrium (SPE-n) of the zero-sum

game at node n defined by the triple Gz,n := 〈{Usern, Attackern}, {Su,n(sn),Sa,n(sn),Su,a,n(sn)}, Kn〉,

if

Kn(p∗u,n, pa,n, sn; pu,−n, pa,−n) ≤ Kn(p∗u,n, p
∗
a,n, sn; pu,−n, pa,−n) ≤ Kn(pu,n, p

∗
a,n, sn; pu,−n, pa,−n),

(18)

∀pu,n ∈ Su,n(sn), pa,n ∈ Sa,n(sn), (pu,n, pa,n) ∈ Su,a,n(sn), where Kn and Su,a,n(sn) is the objec-

tive function and the feasible set defined in (16) and (17), respectively.

Furthermore, the strategy pairs {(p∗u,n, p∗a,n)}n∈{1,...,N} is a saddle-point equilibrium (SPE-
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N) of the game of N zero-sum games at each node if for every n ∈ {1, ..., N},

Kn(p∗u,n, pa,n, sn; p∗u,−n, p
∗
a,−n) ≤ Kn(p∗u,n, p

∗
a,n, sn; p∗u,−n, p

∗
a,−n) ≤ Kn(pu,n, p

∗
a,n, sn; p∗u,−n, p

∗
a,−n).

(19)

The definition indicates that if a pair (p∗u,n, p
∗
a,n) at node n satisfies (18), then it is a SPE-n

of the zero-sum game between user n and attacker n. Note that (p∗u,n, p
∗
a,n) also depends on

the actions of other players at other nodes. The definition also indicates that the game of N

zero-sum games in this network admits a SPE-N if all the strategy pairs (p∗u,n, p
∗
a,n) at every

node satisfy (19).

Proposition 7 At node n ∈ {1, ..., N}, given the actions of players (pu,−n, pa,−n) and the

corresponding risk level R−n at other nodes, and the network parameters η, W∗, if an insurance

coverage level sn satisfies

1− γn(1− sn)

(
ln(

cu,n
ca,n

+ 1) +
∑
m 6=n

w∗nmln(
pa,m
pu,m

+ 1)

)
> 0, (20)

there exists a unique SPE-n to the zero-sum game defined in Definition 4, given by

p∗u,n = γn(1−sn)w∗nn
cu,n+ca,n

, p∗a,n = cu,nγn(1−sn)w∗nn
ca,n(cu,n+ca,n)

. (21)

Furthermore, if {sn}n∈{1,...,N} satisfy

1− γn(1− sn)

(
N∑
m=1

w∗nmln(
cu,m
ca,m

+ 1)

)
> 0, ∀n ∈ {1, ..., N}, (22)

there exists a unique SPE-N to the game of N zero-sum games defined in Definition 4, which

is the same as (21), ∀n ∈ {1, ..., N}.

Proof. See Appendix B.

Proposition 7 indicates the SPE-n of the zero-sum game between the user and the attacker

at each node. The SPE-n at each node does not depend on the actions of players at other
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nodes. With the increase of the insurance coverage, both the user and the attacker will take

weaker actions. Comparing Proposition 7 with Proposition 1 for Case 1, we note that the

equilibrium solution in Case 2 naturally incorporates w∗nn, demonstrating the network impact

on the security of each node. Since w∗nn > 1, p∗u,n > p∗u, p
∗
a,n > p∗a, it can be seen that the

users and the attackers take stronger protection and attack actions, respectively, when nodes

are networked. Proposition 7 also indicates the SPE-N of the game of N zero-sum games.

Following similar steps in Case 1, we have the following theorem regarding the SPE-n and

SPE-N .

Theorem 1 The following facts of SPE-n and SPE-N in Case 2 holds.

(i) Peltzman Effect: When sn is higher, the SPE-n p∗u,n of user n tends to be smaller.

(ii) Invariability of The SPE-n Ratio: The SPE-n satisfies p∗u,ncu,n = p∗a,nca,n. Specially,

p∗a,n
p∗u,n

= cu,n
ca,n

, if p∗u,n, p
∗
a,n 6= 0.

(iii) Constant Cost Determined SPE-N Risk: User n has a constant SPE-N risk level

R∗n =
∑N

m=1w
∗
nmln(

p∗a,m
p∗u,m

+ 1) =
∑N

m=1w
∗
nmln( cu,m

ca,m
+ 1).

(iv) At the SPE-N of the game of N zero-sum games, the average direct loss of user n is

E(Xn) = R∗n, the average effective loss of user n is E(ξn) = (1− sn)R∗n, the expected

payment of the insurer to user n is E(snXn) = snR
∗
n.

Theorem 1 indicate similar results to Remark 1, Corollary 1, Remark 2 and Corollary 2 of

Case 1. Note that the average loss at node n not only depends on the actions of the user and

the attacker at this node, but also player’s actions at other nodes, which is different from

Corollary 2 of Case 1. Thus, the average loss at each node is larger than the average loss

of Case 1 due to the network effects. Moreover, the expected payment of the insurer is also

higher.

Following similar steps in Case 1, we reach the following proposition on insurability.
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Proposition 8 (Fundamental Limits on Insurability) Given an insurance coverage level

sn that 1− γn(1− sn)
(∑N

m=1w
∗
nmln( cu,m

ca,m
+ 1)

)
≤ 0, (p∗u,n, p

∗
a,n) does not satisfy (22), thus,

the average direct loss of user n E(Xn) → ∞, and the game of N zero-sum games defined

in Definition 4 does not admit an SPE-N . Thus, user n is not insurable, as the insurance

policy cannot mitigate his loss. Insurers will not also provide insurance to users who are not

insurable.

Each user must pay the insurer a subscription fee Tn to be insured. The average effective

loss of user n at SPE-N with subscription fee Tn is (1−sn)R∗n+Tn = (1−sn)
∑N

m=1w
∗
nmln( cu,m

ca,m
+

1) + Tn, which is monotonically decreasing in sn. Follow similar steps in Condition 1 and

Condition 2, and we have the following condition.

Condition 5 User n will subscribe to the insurance if the following conditions are satisfied.

(i) Individual Rationality (IR-u, n): The subscription fee must satisfy

Tn ≤ Tmax,n := R∗n =
∑N

m=1w
∗
nmln( cu,m

ca,m
+ 1).

(ii) Incentive Compatibility (IC-u, n): For the subscription fee Tn ≤ Tmax,n, user n will

subscribe to the insurance if the coverage level sn satisfies sn ≥ s0,n(Tn) = Tn
R∗n

=

Tn∑N
m=1 w

∗
nmln(

cu,m
ca,m

+1)
.

Compared with Condition 1 and Condition 2 in Case 1, Tmax,n is larger and s0,n(T ) is smaller

due to network effects. This fact indicates that the user will accept a higher subscription fee

and a lower coverage level from the insurer as the network effect can increase the average

loss of the user. In the following subsections, we consider two types of insurers: the case with

a centralized insurer and the case with a fully distributed one.

4.2 Problem of N Insurers

In this subsection, we consider that the network contains N insurers with each node has

1 insurer who aims to minimize the effective loss of user n at this node and maximize his
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operating profit. Note that the gross profit of insurer n is Tn, and the average payment

to user n is snR
∗
n = sn

∑N
m=1w

∗
nmln( cu,m

ca,m
+ 1) from Theorem 1, thus, with similar steps in

Condition 3 and Condition 4, we reach the following conditions for insurers.

Condition 6 Insurer n will provide the insurance to user n when the following conditions

are satisfied.

(i) Individual Rationality (IR-i, n): The insurance policy at node n must satisfy

Tn − snR∗n = Tn − sn
∑N

m=1w
∗
nmln( cu,m

ca,m
+ 1) ≥ 0.

(ii) Feasibility (F-i, n): The coverage level at node n must be feasible, i.e., sn > 1 −
1

γ
(∑N

m=1 w
∗
nmln(

cu,m
ca,m

+1)
) .

With (IR-u,n) and (IC-u,n) constraints for user n, and (IR-i,n) and (F-i, n) constraints

for insurer n, the insurer’s objective can be captured as the following linear programming

problem.

min
{0≤sn≤1,Tn≥0}

Ji,n(sn, Tn) := γn(1− sn)
N∑
m=1

w∗nmln( cu,m
ca,m

+ 1) + cs,n(sn
N∑
m=1

w∗nmln( cu,m
ca,m

+ 1)− Tn)

s.t. (IR-u, n), (IC-u, n), (IR-i, n), (F-i, n).

(23)

The first and the second terms of the objective function indicate the average effective loss of

user n under the coverage sn and the operating profit of insurer n. Note that parameter cs,n

indicates the trade-off of a safer user n and a larger profit of insurer n.

Furthermore, the solution of Problem (23) and the corresponding SPE-N defined in

Definition 4 yield an equilibrium for the bi-level game in Case 2(a) which can be defined as

Definition 5 Let Si,n be the action set for insurer n, Su,n(sn) and Sa,n(sn) be the ac-

tion sets for user n and attacker n given the insurance coverage level, the strategy pairs

(p∗u,n, p
∗
a,n, {s∗n, T ∗n})n∈{1,...,N} is called a bi-level game Nash equilibrium (BGNE-N) of the bi-

level game in Case 2(a) defined by the triple G2(a) := 〈{Users, Attackers, Insurers}, {{Su,n(sn)}, {Sa,n(sn)}, {Si,n}}, {Kn}, {Ji,n}〉,

if {s∗n, T ∗n} solves Problem (23) with the BGNE-N objective function J∗i,n, and the strategy
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pair (p∗u,n, p
∗
a,n) is the SPE-N of the game of N zero-sum games defined in Definition 4 with

the equilibrium payoff K∗n under the insurance policy {s∗n, T ∗n}.

Note that (IR-i,n) and (IC-u,n) together indicate that sn and Tn must satisfy

Tn = snR
∗
n = sn

N∑
m=1

w∗nmln(
cu,m
ca,m

+ 1). (24)

Corollary 4 Equality (24) indicates the following observations:

(i) Zero Operating Profit Principle: The operating profit of insurer n is always 0, as

Tn − snR∗n = 0.

(ii) Linear Insurance Policy Principle: The insurer n can only provide the insurance policy

sn and Tn that satisfies (24), so that user n subscribes to the insurance provided by the

insurer n.

With (24), the optimal insurance for insurer n is summarized in the following proposition.

Proposition 9 The optimal insurance policy for insurer n is

s∗n = 1; T ∗n = Tn,max =
N∑
m=1

w∗nmln(
cu,m
ca,m

+ 1). (25)

Together with Proposition 7, we have the following proposition of the BGNE-N of the bi-level

game for Case 2(a).

Proposition 10 The bi-level game of Case 2(a) between N users, N attackers and N insurers

at a network with N nodes admits a unique BGNE-N solution at each node (p∗u,n, p
∗
a,n, {s∗n, T ∗n})

= (0, 0, {1,
∑N

m=1w
∗
nmln( cu,m

ca,m
+ 1)}). At the equilibrium, insurer n provides a full coverage

for user n and charges a maximum subscription fee from user n. User n and attacker n take

no actions. The equilibrium demonstrates that cyber insurance will effectively mitigate the

loss.
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4.3 Problem of 1 Insurer

In this subsection, we consider that the network contains only 1 insurer with the aim to

minimize the effective loss of all the users and maximize his operating profit. Following

similar steps in Condition 6, we arrive at the following condition for the insurer.

Condition 7 The insurer will provide the insurance to each user when the following condi-

tions are satisfied.

(i) Individual Rationality (IR-i): The insurance policy at each node n must satisfy

N∑
n=1

(Tn − snR∗n) =
N∑
n=1

(Tn − sn
∑N

m=1w
∗
nmln( cu,m

ca,m
+ 1)) ≥ 0.

(ii) Feasibility (F-i): The coverage level at each node n must be feasible as the item (ii) in

Condition 6.

Thus, the insurer’s objective can be captured as the following linear programming problem,

min
{sn,Tn}

N∑
n=1

γn(1− sn)
N∑
m=1

w∗nmln( cu,m
ca,m

+ 1) +
N∑
n=1

cs,n(sn
N∑
m=1

w∗nmln( cu,m
ca,m

+ 1)− Tn)

s.t. (IR-u, n), (IC-u, n), (IR-i), (F-i).

(26)

Compared to Problem (23), the insurer’s objective in Problem (26) is to minimize the global

average effective loss of all the users at every node, and maximize the global operating profit.

The rationality constraint for the insurer also takes into account of all the users. Moreover,

the rationality constraints of the insurer and the incentive compatibility constraints of the

users have the following properties.

Theorem 2 (IC-u, n) and (IR-i) indicate the following observations:

(i) Zero Operating Profit Principle: The operating profit of insurer n is always 0, as

Tn − snR∗n = 0.

(ii) Linear Insurance Policy Principle: The insurer can only provide the insurance policy sn

and Tn that satisfy (24), so that the user n subscribes to the insurance.
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Proof. From the constraint (IC-u,n), we have

∑N
n=1(Tn − sn

∑N
m=1w

∗
nmln( cu,m

ca,m
+ 1)) ≤

∑N
n=1(Tn − s0,n

∑N
m=1w

∗
nmln( cu,m

ca,m
+ 1))

≤
∑N

n=1(Tn −
Tn∑N

m=1 w
∗
nmln(

cu,m
ca,m

+1)

∑N
m=1w

∗
nmln( cu,m

ca,m
+ 1)) ≤ 0.

Together with (IR-i) constraint, we have
∑N

n=1(Tn − sn
∑N

m=1w
∗
nmln( cu,m

ca,m
+ 1)) = 0, which

indicates that the profit of the insurer is 0. Moreover, with (IR-u,n), the fact that the sum of

all non-positive terms equal to 0 shows that Tn − sn
∑N

m=1w
∗
nmln( cu,m

ca,m
+ 1) = 0, which is the

same as (24).

Note that Theorem 2 admits the same relation between the subscription fee and the

coverage level as in Corollary 4. The insurer cannot achieve better by controlling all the

nodes. Thus, the optimal insurance policy for 1 insurer at each node is the same as the

optimal insurance policy for N insurers at each node, which is shown in Proposition 9. As

a result, together with Proposition 7, the bi-level game of Case 2(b) admits an equilibrium

where the insurer provides a full coverage for user n and charges a maximum subscription fee

from user n, user n and attacker n take no actions.

5 Case 3: N Nodes-1 User-1 Attacker-1 Insurer

In this section, we consider the same network with N nodes in Section 4. Note that in this

network there exist only one user, one attacker and one insurer. This setting differs from

Section 3 and Section 4 in that the user and the attacker consider the network as a system.

5.1 Zero-Sum Game between User and Attacker

The user aims to reduce the average effective losses of all the nodes while the attacker aims

to maximize the losses. The local protection levels and the attack levels can be represented

as {pu,n}n∈{1,...,N} and {pa,n}n∈{1,...,N}, respectively. The insurance policy can be represented

by coverage levels {sn}n∈{1,...,N} and subscription fee T . Recall (16) and (17), by following a
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similar step in Section 4, we can describe the zero-sum game with:

K
(
{pu,n}n∈{1,...,N}, {pa,n}n∈{1,...,N}, {sn}n∈{1,...,N}

)
=

N∑
n=1

Kn(pu,n, pa,n, sn; pu,−n, pa,−n), (27)

Su,a :=

{(
{pu,n}n∈{1,...,N}, {pa,n}n∈{1,...,N}

) ∣∣∣∣∣(pu,n, pa,n) ∈ Su,a,n

}
. (28)

where Kn and Su,a,n come from (16) and (17), respectively. Note that (28) indicates the

feasible set of the user. Furthermore, the zero-sum game yields a saddle-point equilibrium

which can be defined as follows.

Definition 6 Given the network parameters η,W∗, let Su,n({sn}), Sa,n({sn}) and Su,a,n({sn})

be the action sets for the user and the attacker given the insurance coverage level {sn} at each

node n. Then the strategy pair
(
{p∗u,n}n∈{1,...,N}, {p∗a,n}n∈{1,...,N}

)
is a saddle-point equilibrium

(SPE) of the zero-sum game defined by the triple Gz := 〈{User, Attacker}, {Su,n(sn),Sa,n(sn),Su,a,n({sn})}n∈{1,...,N}, K〉,

if

K
(
{p∗u,n}, {pa,n}, {sn}

)
≤ K

(
{p∗u,n}, {p∗a,n}, {sn}

)
≤ K

(
{pu,n}, {p∗a,n}, {sn}

)
, (29)

where K is the objective function from (27).

Proposition 11 Given network parameters η,W∗, if 1−γn(1−sn)
∑N

m=1w
∗
nmln( cu,m

ca,m
+1) >

0,∀n ∈ {1, ..., N}, the SPE of the zero-sum game is
(
{p∗u,n}n∈{1,...,N}, {p∗a,n}n∈{1,...,N}

)
, where

p∗u,n =

N∑
m=1

γm(1−sm)w∗mn

cu,n+ca,n
, p∗a,n =

cu,n
N∑
m=1

γm(1−sm)w∗mn

ca,n(cu,n+ca,n)
, ∀n ∈ {1, ..., N}. (30)

Proof. See Appendix C.

Proposition 11 provides a closed-form SPE of the zero-sum game between an user and an

attacker in a network with N nodes. Compared to Proposition 1 for Case 1, the equilibrium

defense and attack actions in Proposition 11 are stronger with network effects. Compared to

Proposition 7 for N users and N attackers case, the equilibrium actions in Proposition 11
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with are coupled with other nodes’ insurance policies {sm}, network parameters {w∗mn}, and

{γm}. Thus, the user and the attacker spend more efforts at each node.

Theorem 3 The following facts of SPE in Case 3 hold.

(i) Peltzman Effect: When sn is higher, the SPE of the user at node n p∗u,n tend to be

smaller.

(ii) Invariability of The SPE Ratio: The SPE satisfies p∗u,ncu,n = p∗a,nca,n. Specially,

p∗a,n
p∗u,n

= cu,n
ca,n

if p∗u,n, p
∗
a,n 6= 0.

(iii) Constant Cost Determined SPE Risk: At node n, the user has a constant SPE risk level

R∗n =
∑N

m=1w
∗
nmln(

p∗a,m
p∗u,m

+ 1) =
∑N

m=1w
∗
nmln( cu,m

ca,m
+ 1).

(iv) At the SPE, the average direct loss of the user is E(
∑N

n=1Xn) =
∑N

n=1 E(Xn) =∑N
n=1R

∗
n, the average effective loss of the user is E(

∑N
n=1 ξn) =

∑N
n=1 E(ξn) =

∑N
n=1R

∗
n,

the expected payment of the insurer to the user is E(
∑N

n=1 snXn) =
∑N

n=1 snR
∗
n.

This theorem gives similar conclusions as Remark 1, Corollary 1, Remark 2 and Corollary 2

of Case 1 and Theorem 1 in Case 2. Furthermore, we have the following conditions that the

user will subscribe to the insurance.

Condition 8 The user will subscribe to the insurance if the following conditions are satisfied.

(i) Individual Rationality (IR-u): The subscription fee must satisfy

T ≤ Tmax :=
∑N

n=1R
∗
n =

∑N
n=1

∑N
m=1w

∗
nmln( cu,m

ca,m
+ 1).

(ii) Incentive Compatibility (IC-u): For the subscription fee T ≤ Tmax, the user will subscribe

to the insurance if the coverage level sn satisfies
∑N

n=1

∑N
m=1 snw

∗
nmln( cu,m

ca,m
+ 1) ≥ T .

Compared to Case 2, Tmax =
∑N

n=1 Tmax,n, but sn depends on the insurance coverage levels

in other nodes.
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5.2 Insurer’s Problem

Similar to Section 4.C, insurer in Case 3 aims to minimize the average effective loss of the

network, but the insurer charges a single subscription fee T to the only user of the network.

Following similar steps in Section 4.C, we arrive the following conditions for the insurer.

Condition 9 The insurer will provide the insurance to the user when the following conditions

are satisfied.

(i) Individual Rationality (IR-i): The insurance policy must satisfy

T −
N∑
n=1

snR
∗
n = T −

N∑
n=1

sn
∑N

m=1w
∗
nmln( cu,m

ca,m
+ 1) ≥ 0.

(ii) Feasibility (F-i): The coverage level at each node n must be feasible as the item (ii) in

Condition 6.

As a result, the insurer’s objective can be captured as the following linear programming

problem:

min
{{sn},T}

Ji({sn}, T ) :=
N∑
n=1

γn(1− sn)
N∑
m=1

w∗nmln( cu,m
ca,m

+ 1) + cs(
N∑
n=1

N∑
m=1

snw
∗
nmln( cu,m

ca,m
+ 1)− T )

s.t. (IR-u), (IC-u), (IR-i), (F-i).

(31)

Furthermore, the solution of Problem (31) and the corresponding SPE defined in Definition 6

yield an equilibrium for the bi-level game in Case 3 which can be defined as

Definition 7 Let Si be the action set for the insurer, Su({sn}) and Sa({sn}) be the ac-

tion sets for the attacker and the user given the insurance coverage levels, the strategy pair

({p∗u,n}, {p∗a,n}, {{s∗n}, T ∗}) is called a bi-level game Nash equilibrium (BGNE) of the bi-level

game in Case 3 defined by the triple G3 := 〈{User, Attacker, Insurer}, {Su({sn}),Sa({sn}),Si}, K, Ji〉,

if {{s∗n}, T ∗} solves Problem (31) with the BGNE function J∗i,n, and the strategy pair (p∗u,n, p
∗
a,n)

is the SPE of the zero-sum game defined in Definition 6 with the equilibrium payoff K∗ under

the insurance policy {{s∗n}, T ∗}.
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Note that (IR-i) and (IC-u) together indicate that sn and T must satisfy

T =
N∑
n=1

snR
∗
n =

N∑
n=1

sn

N∑
m=1

w∗nmln(
cu,m
ca,m

+ 1). (32)

Theorem 4 (IC-u) and (IR-i) indicate the following observations:

(i) Zero Operating Profit Principle: The operating profit of the insurer is always 0, as

T −
N∑
n=1

snR
∗
n = 0.

(ii) Linear Insurance Policy Principle: The insurer can only provide the insurance policy sn

and Tn that satisfies (32), so that the user subscribes to the insurance provided by the

insurer.

As a result, the optimal insurance policy for the insurer can be shown in the following

proposition.

Proposition 12 The optimal insurance policy for the insurer is

s∗n = 1, ∀n ∈ {1, ..., N}; T ∗ = Tmax =
N∑
n=1

N∑
m=1

w∗nmln(
cu,m
ca,m

+ 1). (33)

Together with Proposition 11, we have the following proposition of the equilibrium solution

of the bi-level game in Case 3.

Proposition 13 The bi-level game of Case 3 admits a BGNE ({p∗u,n}, {p∗a,n}, {{s∗n}, T ∗})

= ({0}, {0}, {{1},
∑N

n=1

∑N
m=1w

∗
nmln( cu,m

ca,m
+ 1)}). The insurer provides a full coverage for

every node and charges a maximum subscription fee from the user. The user and the attacker

take no actions at the equilibrium. The equilibrium demonstrates that cyber insurance will

effectively mitigate the loss.
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Figure 5: Saddle-point local protection level and attack level at node n in a fully connected
network with N nodes. Each node has the same γn, sn, cu,n and ca,n, and they have
γn(1−sn)
cu,n+ca,n

= 1. η denotes the discount rate of the network effects.

6 Numerical Experiments

In this section, we present numerical examples to demonstrate network effects on the cyber

insurance. Consider a fully connected network with N nodes. The risk level of the nodes are

coupled. We assume that the probability that an attack on node n can create an adversarial

impact on node m 6= n is the same for all nodes in the network. Hence, we have W = {wnm},

where wnn = 0 and wnm = 1
N−1 , ∀n,m ∈ {1, ..., N}, n 6= m. We also consider that each node

has the same γn, sn, cu,n and ca,n that γn(1−sn)
cu,n+ca,n

= cu,nγn(1−sn)
ca,n(cu,n+ca,n)

= 1. Thus, the insurance

policy satisfies sn = 1− cu,n+ca,n
γn

. Therefore, the SPE-N of the user and the attacker at node

n in N Nodes-N Users-N Attackers case can be described as p∗u,n = p∗a,n = w∗nn, the SPE of

the user and the attacker in Case 3 can be found as p∗u,n = p∗a,n =
∑N

m=1w
∗
mn. Note that w∗nn

and w∗nm comes from Proposition 6 with W∗ = (IN − ηWT )−1, with η being the attenuation

of damage when an attack propagates from a neighboring node. A larger η indicates that an

attack on one node has a more significant impact on other nodes. Moreover, when w∗nn = 1

and w∗nm = 0, both cases have p∗u,n = p∗a,n = 1, i.e., the results of Case 1.

Fig. 5 shows that, with a larger discount rate η, the equilibrium local protection level

of the user and the attack level of the attacker are higher, indicating that the user and the
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Figure 6: The value of w∗nn for nodes with different numbers of neighbors under different η.
The network has 20 nodes.

attacker are required to spend more efforts when the network effect is strong. Moreover, as

the number of nodes increases, the results of Case 2(a) an Case 2(b) satisfy p∗u,n = p∗a,n → 1,

i.e., Case 1, while in the Case 3, p∗u,n = p∗a,n = 1
1−η , which is independent of the size of the

network, and it corroborates the result of (iii) in Proposition 6. From Proposition 11, note

that since
∑N

m=1w
∗
mn = 1

1−η , the value of w∗nn describes the level of dependence of user’s

decision on attacker and insurer’s decisions at the node. When w∗nn is large, the user and

the attacker’s decisions tend to be less affected by the network effects, specially the insurer’s

decisions on other nodes.

In the next experiments, we consider the case when each node has different degrees. Note

all the other variables are the same for each node. From Fig. 6, since w∗nn increases with

respect to η, the local protection level and attack level are high when η is large. Note that

w∗nn also increases with respect to the number of neighbors. Thus, users and attackers at

nodes with more neighbors are required to spend more efforts at the equilibrium in Case 2(a)

and 2(b). Since
∑N

m=1w
∗
mn = 1

1−η , the user and the attackers’ actions at nodes with more

neighbors depend less on the the insurance coverage levels at other nodes in Case 3.

38



7 Dynamic Insurance

The main focus of the paper has been on the static analysis of the bi-level game-theoretic

framework for cyber insurance problem. In this section, we will extend the static problem to

a dynamic setting with a network of users and attackers.

7.1 Risk-Sensitive Cyber-Insurance

Consider a network with N users. The state of user i is denoted by xi(t) ∈ Xi ⊂ R+ which

models the risk level that evolves over time. Let x = {xi}Ni=1 be the state vector of all users.

Since users are connected by a network, the dynamics of the risk levels of the users are

described by the following linear Itô stochastic differential equation:

dx(t) = (A(t)x(t) +B(t)u(t))dt+
√
εD(t)dB(t), (34)

where A(t) ∈ RN×N is the state transition matrix; B(t) ∈ RN×N is the input matrix;

u(t) = {ui}Ni=1 ∈ U :=
∏N

i=1 Ui ⊂ RN is the control input; ε is a small positive number;

D(t) ∈ RN×N is the volatility matrix; {B(t), t ≥ 0} is a standard M -dimensional Brownian

motion process with B(0) = 0 with probability 1. Note that matrix A captures the network

topology of the network. If two nodes are connected, then Aij 6= 0. Each user can control their

risk by employing defense mechanisms such as frequently changing passwords and adopting

anti-virus software. The control law determined by each user can be generally described

by ui(t) = µi(Ii(t), t), where µi ∈ Γi is a class of policies that depend on the information

structure Ii(t) of user i. For example, when Ii = {xi(t)}, a user can only observe his own

risk state and the control policy is given by ui = µD
i (xi), where µDi ∈ ΓD

i is a distributed

control policy and ΓD
i denotes all the admissible control policies of this type. Similarly, when

Ii = {x(t)}, a user can observe the state of the entire network. The control policy given

by ui = µS
i (x), µS

i ∈ ΓS
i is a perfect-state feedback policy, and ΓS

i denotes all the admissible

control policies of this type.
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In this section, we consider that risk-sensitive users who aim to minimize the following

exponentiated cost functional.

J(µ; t, x) = δ logE
{

exp(
1

δ
)

[
q(x(tf )) +

∫ tf

t

g(t̂, x(t̂), u(t̂))dt̂

]}
, (35)

where δ > 0 is the risk-sensitivity index for the users. Here, we assume that q and g are

nonnegative, q is uniformly bounded on [0, tf ], and g is uniformly bounded on [0, tf ]×RN ×U .

We further assume that q(x(tf )) := x′(tf )Qfx(tf ), where Qf ∈ RN×N , and

g(t̂, x(t̂), u(t̂)) = x′(t)Q(t)x(t) + u′(t)u(t),

where Q(t) ∈ RN×N . The linear-quadratic structure of the problem lead to the following

risk-sensitive optimal perfect-state feedback control:

u∗(t) = µ∗(t;x) = −B′(t)Z(t)x, 0 ≤ t ≤ tf , (36)

where Z(·) is the nonnegative definite solution of the generalized Riccati differential equation

(RDE):

Ż + A′Z + ZA+Q− Z(BB′ − (1/γ2)DD′)Z = 0,

Z(tf ) = Qf .
(37)

Note that γ =
√

δ
2ε

. Moreover, the value function is thus denoted by

V (t;x) = inf
µ
J(µ; t, x) = x′Z(t)x+ lε(t), t ≥ 0, (38)

where lε(t) = ε
∫ tf
t
Tr
[
Z(t̂)D(t̂)D′(t̂)

]
dt̂.

The users aim to further mitigate the risks of cyber-attacks with cyber insurance. Note

that the user pays a premium to the insurer and the insurer will then provide a coverage

policy s : RN → R at time tf . Here, we assume that the policy takes a quadratic form
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s(x(tf )) = x′(tf )Sx(tf ), where S ∈ RN×N is a semi-positive definite matrix and x(tf ) is the

final state of the users. The insurance policy is parametrized by S and it can take different

forms depending on whether the insurance is centralized or distributed.

As a result, the risk-sensitive cost functional with cyber insurance becomes

J I(µ; t, x|S) = δ logE
{

exp(
1

δ
)

[
q(x(tf ))− s(x(tf )) +

∫ tf

t

g(t̂, x(t̂), u(t̂))dt̂

]}
. (39)

The optimal control input then becomes

u∗(t) = µ∗(t;x) = −B′(t)Ẑ(t)x, 0 ≤ t ≤ tf , (40)

and the value function is

V I(t;x) = inf
µ
J I(µ; t, x) = x′Ẑ(t)x+ lε(t), t ≥ 0, (41)

where lε(t) = ε
∫ tf
t
Tr
[
Ẑ(t̂)D(t̂)D′(t̂)

]
dt̂, and Ẑ is given by:

˙̂
Z + A′Ẑ + ẐA+Q− Ẑ(BB′ − (1/γ2)DD′)Ẑ = 0,

Ẑ(tf ) = Qf − S.
(42)

Note that the only difference between (37) and (42) is the final value of Z, and when S = 0,

(40) and (42) are the same as (36) and (37), respectively.

Equations (40), (41) and (42) capture the behavior of a risk-sensitive user under cyber

insurance. Note that the user only subscribes the insurance when the cost under insurance is

lower than the cost under no insurance. Let W ∈ R+ denote the subscription fee, and then

we have that the user will subscribe the insurance when

V I(t;x) +W ≤ V (t;x). (43)
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Figure 7: Continuous-time Risk-sensitive User.

Thus, the insurer’s problem is given by

min
{S,W}

E {f(x(tf )) + s(x(tf ))} −W

s.t. V I(t;x) +W ≤ V (t;x).

(44)

Here, f is the cost of the network to the insurer if the state of the terminal state of users are

xtf . Note that minimizing f(x(tf)) captures the insurer’s intention to minimize the loss of

the user, and minimizing s(x(tf ))−W captures the insurer’s objective to maximize his profit.

The constraint captures the incentive compatibility of the user. The individual rationality

constraints have been implicitly built into the value function V I of optimization problem

(44). The solution {S∗,W ∗} to Problem (44) is the optimal insurance policy with which the

insurer makes a profit and the user mitigates his loss.

Example: Consider that there is only one user at this network with A = 0.1, B = 0.5,

D = 0.1, Q = 1, Qf = 1. At time t = 0, the user has risk level x0 = 1. The insurer provides

the insurance coverage level s = 0.8. Numerical results are shown in Fig. 7. We can see from

the figure that the user tends to take lower local protection levels when he subscribes to the

insurance, which is referred as Peltzman effect. As a result, the risk level of the user becomes

higher under the insurance. However, the effective loss of the user is lower as the insurer

covers part of the loss.
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7.2 Markov Decision Process Cyber-Insurance

Let st ∈ S denote the state of the user at time t, with S = {G,B}. For t ≥ 0, if st = G,

the user is in a good state with a lower loss, otherwise, the user is in a bad state with a

higher loss. To avoid high total losses, the user aims to stay at good state as often as possible.

We further define the action set of the user A = {aH , aL}. By taking action at = aH , the

user has a high local protection level; otherwise, the user has a low local protection level.

Let pas,s′ = Pr(st+1 = s′|st = s, at = a) denotes the probability that action a in state s at

time t will lead to state s′ at time t+ 1. Note that paHsG,sG + paHsG,sB = 1, paHsB ,sG + paHsB ,sB = 1,

paLsG,sG + paLsG,sB = 1, paLsB ,sG + paLsB ,sB = 1. Furthermore, we make the following assumptions on

pas,s′ :

• paHsG,sB < paHsG,sG , i.e., the probability that a user returns to a bad state is lower than the

probability that the user stays at a good state when the user has a high local protection

level at a good state.

• paHsB ,sB < paHsB ,sG , i.e., the probability that a user stays at a bad state is lower than

the probability that the user returns to a good state when the user has a high local

protection level at a bad state.

• paLsG,sB > paLsG,sG , i.e., the probability that a user returns to a bad state is greater than the

probability that the user stays at a good state when the user has a low local protection

level at a good state.

• paLsB ,sB > paLsB ,sG , i.e., the probability that a user stays at a bad state is greater than

the probability that the user returns to a good state when the user has a low local

protection level at a bad state.

Let {xt}∞t=0 denote the sequence of random losses. Let {yt := xt+ct}∞t=0 denote the sequence

of random total losses, where ct indicates the cost of the user taking local protections at time
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t. We further assume that ct = c(at), where at is the level of the local protection at time t.

We impose the following assumption on c(a):

• c(aH) > c(aL), i.e., taking high local protection level costs more.

The key objective of Markov Decision Process (MDP) is to find a policy for the user: a set

function π = {πsG , πsB} that specifies the action πs that the user will choose when in state s.

The goal of the problem is to find a policy π that will minimize the expected discounted sum

over an infinite horizon:
∞∑
t=0

γtyπst (st, st+1),

where yπst (st, st+1) = xπst (st, st+1) + c(πst) represents the total loss at time t, incurred to the

user who is in state st and takes action πst . γ is the discounted rate, where γ ≥ 0 and is

assumed to be strictly less than 1. Here, we focus on optimal stationary policy, or policy that

can be written as a function of s only, that is, π is independent of time t as described above.

Let v denotes the value vector which contains the loss-to-go for all states. Furthermore,

an optimal policy (v∗, π∗) is then a fixed point of the following minimum loss operator:

π∗sG := arg min
a∈A

{
pa(sG, sG)

(
ya(sG, sG) + γv∗sG

)
+ pa(sG, sB)

(
ya(sG, sB) + γv∗sB

)}
π∗sB := arg min

a∈A

{
pa(sB, sG)

(
ya(sB, sG) + γv∗sG

)
+ pa(sB, sB)

(
ya(sB, sB) + γv∗sB

)}
v∗sG := pπ

∗
sG (sG, sG)

(
yπ
∗
sG (sG, sG) + γv∗sG

)
+ pπ

∗
sG (sG, sB)

(
yπ
∗
sG (sG, sB) + γv∗sB

)
v∗sB := pπ

∗
sB (sB, sG)

(
yπ
∗
sB (sB, sG) + γv∗sG

)
+ pπ

∗
sB (sB, sB)

(
yπ
∗
sB (sB, sB) + γv∗sB

)
Using dynamic programming, we can find π∗ and v∗.

Lemma 1 Let

Pπ =

 pπsG (sG, sG) pπsB (sB, sG)

pπsG (sG, sB) pπsB (sB, sB)
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and

yπ =

 pπsG (sG, sG)yπsG (sG, sG) + pπsG (sG, sB)yπsG (sG, sB)

pπsB (sB, sG)yπsB (sB, sG) + pπsB (sB, sB)yπsB (sB, sB)

 .
Then, the optimal policy (v∗, π∗) satisfies

(I − γP T
π∗)v

∗ = yπ∗ . (45)

The MDP problem can also be reformulated as a linear programming (LP) problem:

max
β

1Tβ

s.t.
(
(P � (X + C))T1

)
− (E − γP )T β ≥ 0,

(46)

where � is the Hadamard product, i.e., entry-wise product, and

P =

 paH (sG, sG) paL(sG, sG) paH (sB, sG) paL(sB, sG)

paH (sG, sB) paL(sG, sB) paH (sB, sB) paL(sB, sB)

 ,

X =

 xaH (sG, sG) xaL(sG, sG) xaH (sB, sG) xaL(sB, sG)

xaH (sG, sB) xaL(sG, sB) xaH (sB, sB) xaL(sB, sB)

 ,

C =

 c(aH) c(aL) c(aH) c(aL)

c(aH) c(aL) c(aH) c(aL)

 ,

E =

 1 1 0 0

0 0 1 1

 .
The solution of the linear programming problem (46) denotes the optimal cost-to-go, i.e.,

β∗ = [β∗1 , β
∗
2 ]T = v∗. The optimal policy can then be achieved by solving the following
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problems:

π∗sG := arg min
a∈A
{pa(sG, sG) (ya(sG, sG) + γβ∗1) + pa(sG, sB) (ya(sG, sB) + γβ∗2)}

π∗sB := arg min
a∈A
{pa(sB, sG) (ya(sB, sG) + γβ∗1) + pa(sB, sB) (ya(sB, sB) + γβ∗2)}

The user aims to mitigate the loss by subscribing to the insurance. By paying a subscription

fee at the initial time, the user will receive a coverage from the insurer when he faces losses.

We further assume that the subscription fee is a constant T and the coverage is a function of

the losses:

r(X) : R2×4 → R2×4.

As a result, the user’s problem with the insurance can be captured as follows:

max
β

1Tβ

s.t.
(
(P � (X − r(X) + C))T1

)
− (E − γP )T β ≥ 0,

(47)

Note that when function r(X) = 02×4 for any given losses X, i.e., there is no coverage,

Problem (47) is equivalent to Problem (46).

Problem (47) captures the user’s behavior under insurance. Note that the user subscribes

to the insurance only when the loss with the insurance is lower than the loss without the

insurance. Thus, the user will purchase the insurance when

βr1 + T ≤ β0
1 and βr2 + T ≤ β0

2 (48)

where β1, β2 come from (46) and βr1 , β
r
2 come from (47).

Note that the insurer will provide the insurance only when he can make a profit from it.

The profit of the insurer can be captured as follows:

T− (I − γP T
π∗)
−1r(xπ∗)
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Figure 8: Markov decision process.

where (I − γP T
π∗)
−1r(xπ∗) denotes the covered losses of the user paid by the insurer. Thus,

the insurer will provide the insurance when the following condition holds:

T− (I − γP T
π∗)
−1r(xπ∗) ≥ 0. (49)

As a result, the insurer’s objective of maximizing the total profit can be described as follows:

max
r,T

1T
(
T− (I − γP T

π∗)
−1r(xπ∗)

)
s.t.

T− (I − γP T
π∗)
−1r(xπ∗) ≥ 0;

βr + T ≤ β0.

(50)

The solution {T∗, r∗} to Problem (50) is the optimal insurance policy with which the insurer

makes a profit and the user mitigates his loss.

Example: We present a numerical example in Fig. 8. We can see from Fig. (a) that with

the increase of the coverage level, the user tends to take a low local protection level at both

states, which shows the Peltzman effect where the user acts riskily when he is protected by

the insurance. From Fig. (b) we can see that the expected total loss decreases with the

increase of the coverage level. Note that when the user changes his local protection level
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from high to low, the loss increases. Yet as a result, the loss decreases again as the insurer

provides more coverage.

8 Discussions

In this paper, we have described a bi-level game-theoretic framework for studying cyber

insurance of computer networks. We have taken into account complex interactions between

users, insurers, and attackers. The framework captures the information asymmetry between

users and the insurers through the moral-hazard type of principal-agent model and incorporates

the attack and defense behaviors of the users and the adversaries as zero-sum games. The

developed framework and enables the analysis of the design of cyber insurance as an additional

layer of mitigation scheme in networks. We have studied four cases and have completely

characterized their equilibrium solutions. Our analysis has provided a fundamental limit on

the insurability of the users, and predicted the Peltzman effect. We have shown further that

the subscription fee of the insurance policy is a linear function of the coverage level, and the

zero operating profit principle of the insurer at the equilibrium. Our numerical experiments

have shown that for a fully connected network, with the increase of the number of nodes, the

saddle-point equilibrium solutions of the user and the attacker exhibits less on network effects.

We have also shown that users and attackers at nodes with more neighbors are required to

put more local efforts in the decentralized case while these nodes exhibit weaker network

effects in centralized one. We have included a generalization of the bi-level game framework

into dynamic settings in which the risk of the nodes evolves over time. One direction of future

research is the investigation of insurance policy over complex networks such as scale-free and

small-world networks.
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Appendix

A. Proof of Proposition 1

Consider the minimax problem in (6), for a given insurance policy s and action of the user

pu,
∂K(pu,pa,s)

∂pa
= 0 gives the best action of the attacker: p∗a(pu) = γ(1−s)

ca
− pu. As a result,

K(pu, p
∗
a(pu), s) = γ(1− s)ln(γ(1−s)

capu
) + cupu − γ(1− s) + capu, and the derivative of it with

respect to pu:
∂K(pu,p∗a(pu),s)

∂pu
= cu + ca − γ(1−s)

pu
= 0, which gives the best action of the user,

p∗u = γ(1−s)
cu+ca

. By plugging p∗u into p∗a(pu), we can obtain p∗a = cuγ(1−s)
ca(cu+ca)

. Following similar

steps, the max-min problem in (6) admits the same solution. Thus, the minimax problem

and the max-min problem have the same saddle-point solution, which is unique. Note that

the solution is feasible only when it satisfies the feasible constraint (4). Thus, we have

1− γ(1− s)ln( p
∗
a

p∗u
+ 1) = 1− γ(1− s)ln( cu

ca
+ 1) > 0.

B. Proof of Proposition 7

Notice that at node n, for a given insurance coverage sn and players’ actions at other nodes

(pu,−n, pa,−n), the minimax-problem with the objective function (16) is equivalent as solving

the following problem

min
pu,n∈Su,n(sn)

max
pa,n∈Sa,n(sn)

γn(1− sn)w∗nnrn(pu,n, pa,n) + cu,npu,n − ca,npa,n.

The other terms have been removed as they do not depend on the decision variables (pu,n, pa,n).

Following similar steps in Appendix A, the minimax problem yields (21). Similarly, the

max-min problem yields the same solution. Thus, the zero-sum game between the user and

the attacker at node n admits the unique saddle-point solution shown in Proposition 7.
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C. Proof of Proposition 11

We use similar methods in Appendix A and B to prove Proposition 11. Note that there is no

coupling between pu,n and pa,n in the utility function. Thus, for a given insurance policy {sn}

and the actions of the user {pu,n}, the max-problem for the attacker with decision variables

{pa,n} is equivalent to solving N sub-max-problems, which can be described as follows:

max
pa,n∈Sa,n(s)

rn(pu,n, pa,n)
N∑
m=1

γm(1− sm)w∗mn − ca,npa,n. (51)

Similarly, given the actions of the attacker {pa,n}, the min-problem for the user with decision

variables {pu,n} is equivalent to solving N sub-min-problems, which can be described as

follows:

min
pu,n∈Su,n(s)

rn(pu,n, pa,n)
N∑
m=1

γm(1− sm)w∗mn + cu,npu,n. (52)

Following similar steps in Appendix A and Appendix B, we can achieve the unique SPE in

Proposition 11.

D. Proof of Proposition 6

Since the network is well-connected and wnn = 0,
∑N

n=1wmn = 1,∀1, ..., N , we have that W

is a right irreducible stochastic matrix with all diagonal elements being 0, and W1N = 1N ,

where 1N is a column vector of size N with all elements equal to 1. Thus, W has an eigenvalue

of 1 associated with an eigenvector 1N .

Based on the Perron-Frobenius Theorem (Section 8, [34]), the largest absolute eigenvalue

of an irreducible stochastic matrix is 1, and then we have that the spectral radius ρ(W) = 1.

Thus, ρ(ηWT ) = η ∈ (0, 1). As a result, W̃ = IN − ηWT is a n× n non-singular M-matrix.

Since the inverse of a non-singular M-matrix A always exists and A−1 ≥ 0 (F15, [35]), W̃−1

exists and W∗ = W̃−1 ≥ 0. Thus, Proposition 6(i) holds.
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Furthermore, the Neumann Series (IN−ηWT )−1 =
∑∞

k=0(ηW
T )k converges as ρ(ηWT ) =

η < 1 (7.10.9, [34]). Thus, W∗ =
∑∞

k=0(ηW
T )k = IN + (ηWT ) + (ηWT )2 + · · · . As a result,

w∗nn > 1,∀n ∈ {1, ..., N}. Since we have already proved that W∗ = W̃−1 ≥ 0, Proposition

6(ii) holds.

To prove Proposition 6(iii), we first consider that (IN − ηW)1N = IN1N − ηW1N =

1N − η1N = (1 − η)1N . By multiplying both sides by (IN − ηW)−1, we have 1N = (1 −

η)(IN −ηW)−11N . Note that (IN −ηW)−1 = ((IN −ηWT )T )−1 = ((IN −ηWT )−1)T = W∗T ,

thus, 1N = (1− η)W∗T1N , i.e., 1TNW∗ = 1
1−η1

T
N . Thus, Proposition 6(iii) holds.
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